models/feat_pool.py (152 lines of code) (raw):

# Copyright (c) Alibaba, Inc. and its affiliates. import torch import torch.nn.functional as F from torch.distributions import MultivariateNormal import numpy as np import faiss from time import time class IDFeatPool(object): def __init__(self, class_num, sample_num=1500, feat_dim=512, mode='NPOS', device='cuda:0'): self.class_num = class_num self.sample_num = sample_num self.feat_dim = feat_dim self.device = device self.class_ptr = torch.zeros((class_num,)).to(device) self.queue = torch.zeros((class_num, sample_num, feat_dim)).to(device) self.mode = mode if mode == 'NPOS': # Standard Gaussian distribution assert faiss.StandardGpuResources res = faiss.StandardGpuResources() self.KNN_index = faiss.GpuIndexFlatL2(res, self.feat_dim) self.K = sample_num // 3 self.sample_from = sample_num * 2 self.select = sample_num // 5 self.pick_nums = 1 self.ID_points_num = 10 elif mode == 'VOS': self.sample_from = sample_num * 10 self.select = sample_num // 5 self.pick_nums = 10 self.ID_points_num = 1 else: raise NotImplementedError(mode) def update(self, features, labels): if self.queue.device != features.device: # self.queue = self.queue.to(features.device) features = features.to(self.device) if self.queue.dtype != features.dtype: self.queue = self.queue.type_as(features) unique_labels = torch.unique(labels) unique_indices = (unique_labels.view(-1, 1) == labels.view(1, -1)).int().argmax(dim=1) self.queue[unique_labels] = torch.cat((self.queue[unique_labels, 1:, :], features[unique_indices][:, None, :]), 1) self.class_ptr[unique_labels] = (self.class_ptr[unique_labels] + 1).clamp(max=self.sample_num) def ready(self): return (self.class_ptr >= self.sample_num).all() def save(self, path): torch.save(self.queue.cpu(), path) def load(self, path): self.queue = torch.load(path, map_location='cpu')[:, :self.queue.shape[1], :].to(self.queue.device) self.class_ptr = (self.queue != 0.).any(dim=-1).sum(dim=1).to(self.class_ptr.device) def __getitem__(self, index): if not self.ready() or False: # and (self.class_ptr == 0).any() no = self.class_num * self.ID_points_num * self.pick_nums return torch.randn((no, self.feat_dim)).to(self.device), torch.full((no, ), -1).to(self.device), ood_samples, ood_labels = [], [] if self.mode == 'VOS': ood_samples, ood_labels = [], [] mean_embed_id = self.queue.mean(dim=1, keepdim=True) # shape(nc,1,ndim) X = (self.queue - mean_embed_id).view(-1, self.feat_dim) # shape(nc*ns,dim) covariance = (X.T @ X) / len(X) * 10. + .1 # covariance += 0.0001 * torch.eye(len(covariance), device=X.device) covariance += 1.1 * torch.eye(len(covariance), device=X.device) new_dis = MultivariateNormal(torch.zeros(self.feat_dim).cuda(), covariance_matrix=covariance) negative_samples = new_dis.rsample((self.sample_from,)) * 2 prob_density = new_dis.log_prob(negative_samples) cur_samples, index_prob = torch.topk(- prob_density, self.select) negative_samples = negative_samples[index_prob] for ci, miu in enumerate(mean_embed_id): rand_ind = torch.randperm(self.select)[:self.pick_nums] ood_samples.append(miu + negative_samples[rand_ind]) ood_labels.extend([ci] * self.pick_nums) elif self.mode == 'NPOS': mean_embed_id = self.queue.mean(dim=1, keepdim=True) # shape(nc,1,ndim) X = (self.queue - mean_embed_id).view(-1, self.feat_dim) # shape(nc*ns,dim) covariance = (X.T @ X) / len(X) * 10 + .1 # covariance += 0.0001 * torch.eye(len(covariance), device=X.device) covariance += 1.1 * torch.eye(len(covariance), device=X.device) # covariance = torch.eye(self.feat_dim).to(self.queue.device) self.new_dis = MultivariateNormal(torch.zeros(self.feat_dim).to(self.queue.device), covariance) negative_samples = self.new_dis.rsample((self.sample_from,)).to(self.device) * 2 ood_samples, ood_labels = generate_outliers(self.queue, input_index=self.KNN_index, negative_samples=negative_samples, ID_points_num=self.ID_points_num, K=self.K, select=self.select, sampling_ratio=1.0, pic_nums=self.pick_nums, depth=self.feat_dim, cov_mat=1.) ood_samples = torch.cat(ood_samples).to(self.device) ood_labels = torch.tensor(ood_labels).to(self.device) return ood_samples, ood_labels def calc_maha_score(self, samples: torch.Tensor, force_calc=True): # samples: shape(n,ndim) ns, nc = samples.shape[0], self.class_num sample_num_per_cls = self.class_ptr.view(nc, 1) valid_mask = (self.queue != 0).any(dim=-1) # shape(nc,ns) assert (valid_mask.sum(dim=1, keepdim=True) == sample_num_per_cls).all() mean_embed_id = self.queue.sum(dim=1) / sample_num_per_cls # shape(nc,ndim) if force_calc or not hasattr(self, 'maha_cov_inv'): X = (self.queue - mean_embed_id[:, None, :])[valid_mask] # shape(x,ndim) covariance = (X.T @ X) / len(X) # shape(ndim,ndim), class-agnostic covariance += 0.0001 * torch.eye(len(covariance), device=X.device) maha_cov_inv = covariance.inverse()[None, :, :] setattr(self, 'maha_cov_inv', maha_cov_inv) else: maha_cov_inv = getattr(self, 'maha_cov_inv') samples = samples[:, None, :] - mean_embed_id[None, :, :] # shape(ns,1,ndim) - shape(1,nc,ndim) = shape(ns,nc,ndim) samples = samples.view(ns*nc, self.feat_dim, 1) # shape(ns*nc,ndim,1) maha_dist = torch.bmm(torch.bmm(samples.permute(0,2,1), maha_cov_inv.expand(ns*nc,-1,-1)), samples) # f^T @ Cov^-1 @ f maha_dist = maha_dist.view(ns, nc) return - torch.max(-maha_dist, dim=1).values def KNN_dis_search_decrease(target, index, K=50, select=1,): ''' data_point: Queue for searching k-th points target: the target of the search K ''' #Normalize the features target_norm = torch.norm(target, p=2, dim=1, keepdim=True) normed_target = target / target_norm #start_time = time.time() distance, output_index = index.search(normed_target, K) k_th_distance = distance[:, -1] #k_th_output_index = output_index[:, -1] k_th_distance, minD_idx = torch.topk(k_th_distance, select) #k_th_index = k_th_output_index[minD_idx] return minD_idx, k_th_distance def KNN_dis_search_distance(target, index, K=50, num_points=10, length=2000,depth=342): ''' data_point: Queue for searching k-th points target: the target of the search K ''' #Normalize the features target_norm = torch.norm(target, p=2, dim=1, keepdim=True) normed_target = target / target_norm #start_time = time.time() distance, output_index = index.search(normed_target, K) k_th_distance = distance[:, -1] k_th = k_th_distance.view(length, -1) target_new = target.view(length, -1, depth) #k_th_output_index = output_index[:, -1] k_th_distance, minD_idx = torch.topk(k_th, num_points, dim=0) # minD_idx = minD_idx.squeeze() point_list = [] for i in range(minD_idx.shape[1]): point_list.append(i*length + minD_idx[:,i]) #return torch.cat(point_list, dim=0) return target[torch.cat(point_list)] def generate_outliers(ID, input_index, negative_samples, ID_points_num=2, K=20, select=1, cov_mat=0.1, sampling_ratio=1.0, pic_nums=30, depth=342): ncls, nsample, ndim = ID.shape length, _ = negative_samples.shape normed_data = ID / torch.norm(ID, p=2, dim=-1, keepdim=True) distance = torch.cdist(normed_data, normed_data.detach()) # shape(ncls, nsample, nsample) k_th_distance = -torch.topk(-distance, K, dim=-1)[0][..., -1] # k-th nearset (smallest distance), shape(ncls, nsample) minD_idx = torch.topk(k_th_distance, select, dim=1)[1] # top-k largest distance, shape(ncls, select) minD_idx = minD_idx[:, np.random.choice(select, int(pic_nums), replace=False)] #shape(ncls, pic_nums) cls_idx = torch.arange(ncls).view(ncls, 1) data_point_list = ID[cls_idx.repeat(1, pic_nums).view(-1), minD_idx.view(-1)].view(-1, pic_nums, 1, ndim) negative_sample_cov = cov_mat*negative_samples.view(1, 1, length, ndim) negative_sample_list = (negative_sample_cov + data_point_list).view(-1, pic_nums*length, ndim) normed_ood_feat = F.normalize(negative_sample_list, p=2, dim=-1) #shape(cls, pic_nums*length, 512) distance = torch.cdist(normed_ood_feat, normed_data) # shape(ncls, pic_nums*length, nsample) k_th_distance = -torch.topk(-distance, K, dim=-1)[0][..., -1] # k-th nearset (smallest distance), shape(ncls, pic_nums*length) k_distance, minD_idx = torch.topk(k_th_distance, ID_points_num, dim=1) # top-k largest distance, shape(ncls, ID_points_num) OOD_labels = torch.arange(normed_data.size(0)).view(-1, 1).repeat(1, ID_points_num).view(-1) OOD_syntheses = negative_sample_list[OOD_labels, minD_idx.view(-1)] #shape(ncls*ID_points_num, 512) if OOD_syntheses.shape[0]: # concatenate ood_samples outside OOD_syntheses = torch.chunk(OOD_syntheses, OOD_syntheses.shape[0]) OOD_labels = OOD_labels.numpy() return OOD_syntheses, OOD_labels