void cublasFP8MMWrapper::Gemm_Bias_Act()

in maga_transformer/cpp/cuda/cublas/cublasFP8MMWrapper.cc [761:932]


void cublasFP8MMWrapper::Gemm_Bias_Act(__nv_fp8_e4m3*       res,
                                       int                  batchCount,
                                       int                  m,
                                       int                  n,
                                       int                  k,
                                       int64_t              strideA,
                                       int64_t              strideB,
                                       int64_t              strideD,
                                       const float*         alpha,
                                       const float*         beta,
                                       const __nv_fp8_e4m3* input,
                                       const __nv_fp8_e4m3* kernel,
                                       const float*         input_scale,
                                       const float*         kernel_scale,
                                       const __nv_bfloat16* bias,
                                       const float*         output_scale,
                                       cudaStream_t         stream)
{
    RTP_LLM_LOG_DEBUG(__PRETTY_FUNCTION__);
    mu_->lock();

    const void*  devAscalePtr = (const void*)kernel_scale;
    const void*  devBscalePtr = (const void*)input_scale;
    const void*  devDscalePtr = (const void*)output_scale;
    const size_t wsSizeBytes  = CUBLAS_WORKSPACE_SIZE;

    const auto aType       = CUDA_R_8F_E4M3;
    const auto bType       = CUDA_R_8F_E4M3;
    const auto cType       = CUDA_R_16BF;
    const auto dType       = CUDA_R_8F_E4M3;
    const auto computeType = CUBLAS_COMPUTE_32F;
    const auto scaleType   = CUDA_R_32F;
    // const auto epilogueAuxType = CUDA_R_16BF;

    const cublasOperation_t tA = CUBLAS_OP_T;
    const cublasOperation_t tB = CUBLAS_OP_N;

    //------- init, desc & tensors
    cublasLtMatmulDesc_t   matmulDesc;
    cublasLtMatrixLayout_t Adesc;
    cublasLtMatrixLayout_t Bdesc;
    cublasLtMatrixLayout_t Cdesc;
    cublasLtMatrixLayout_t Ddesc;

    {
        check_cuda_error(cublasLtMatmulDescCreate(&matmulDesc, computeType, scaleType));
        check_cuda_error(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_TRANSA, &tA, sizeof(tA)));
        check_cuda_error(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_TRANSB, &tB, sizeof(tB)));

        if (version_major_ >= 11 && version_minor_ >= 11 && version_patch_ > 0) {
            const int8_t fastAccuMode = 1;  // enable fast imprecise accum
            check_cuda_error(cublasLtMatmulDescSetAttribute(
                matmulDesc, CUBLASLT_MATMUL_DESC_FAST_ACCUM, &fastAccuMode, sizeof(decltype(fastAccuMode))));
        }

        // TODO: Check that do we need to set these attributes
        // TODO: comment them for compiler first
        check_cuda_error(cublasLtMatmulDescSetAttribute(
            matmulDesc, CUBLASLT_MATMUL_DESC_A_SCALE_POINTER, &devAscalePtr, sizeof(devAscalePtr)));
        check_cuda_error(cublasLtMatmulDescSetAttribute(
            matmulDesc, CUBLASLT_MATMUL_DESC_B_SCALE_POINTER, &devBscalePtr, sizeof(devBscalePtr)));
        check_cuda_error(cublasLtMatmulDescSetAttribute(
            matmulDesc, CUBLASLT_MATMUL_DESC_D_SCALE_POINTER, &devDscalePtr, sizeof(devDscalePtr)));

        cublasLtEpilogue_t epi = CUBLASLT_EPILOGUE_GELU_BIAS;
        // cublasLtEpilogue_t epi = CUBLASLT_EPILOGUE_BIAS;
        cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epi, sizeof(cublasLtEpilogue_t));
        cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bias, sizeof(const void*));
    }

    {
        const int64_t lda = k;
        const int64_t ldb = k;
        const int64_t ldd = n;

        // create matrix descriptors, we are good with the details here so no need
        // to set any extra attributes
        check_cuda_error(
            cublasLtMatrixLayoutCreate(&Adesc, aType, tA == CUBLAS_OP_N ? n : k, tA == CUBLAS_OP_N ? k : n, lda));
        if (batchCount > 1) {
            check_cuda_error(cublasLtMatrixLayoutSetAttribute(
                Adesc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batchCount, sizeof(batchCount)));
            check_cuda_error(cublasLtMatrixLayoutSetAttribute(
                Adesc, CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &strideA, sizeof(strideA)));
        }

        check_cuda_error(
            cublasLtMatrixLayoutCreate(&Bdesc, bType, tB == CUBLAS_OP_N ? k : m, tB == CUBLAS_OP_N ? m : k, ldb));
        if (batchCount > 1) {
            check_cuda_error(cublasLtMatrixLayoutSetAttribute(
                Bdesc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batchCount, sizeof(batchCount)));
            check_cuda_error(cublasLtMatrixLayoutSetAttribute(
                Bdesc, CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &strideB, sizeof(strideB)));
        }

        check_cuda_error(cublasLtMatrixLayoutCreate(&Cdesc, cType, n, m, ldd));
        // (TODO Hongbinl)Not sure if the implementation makes sense
        if (batchCount > 1) {
            check_cuda_error(cublasLtMatrixLayoutSetAttribute(
                Cdesc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batchCount, sizeof(batchCount)));
            check_cuda_error(cublasLtMatrixLayoutSetAttribute(
                Cdesc, CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &strideD, sizeof(strideD)));
        }

        check_cuda_error(cublasLtMatrixLayoutCreate(&Ddesc, dType, n, m, ldd));
        if (batchCount > 1) {
            check_cuda_error(cublasLtMatrixLayoutSetAttribute(
                Ddesc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batchCount, sizeof(batchCount)));
            check_cuda_error(cublasLtMatrixLayoutSetAttribute(
                Ddesc, CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &strideD, sizeof(strideD)));
        }
    }

    const int                       requestedAlgoCount = 1;
    cublasLtMatmulHeuristicResult_t heuristicResult;
    cublasLtMatmulPreference_t      preference;
    int                             returnedAlgoCount = -1;
    check_cuda_error(cublasLtMatmulPreferenceCreate(&preference));
    check_cuda_error(cublasLtMatmulPreferenceSetAttribute(
        preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &wsSizeBytes, sizeof(wsSizeBytes)));
#if (CUBLAS_VERSION) <= 12000
    uint32_t pointer_mode_mask = 0;
    check_cuda_error(cublasLtMatmulPreferenceSetAttribute(
        preference, CUBLASLT_MATMUL_PREF_EPILOGUE_MASK, &pointer_mode_mask, sizeof(pointer_mode_mask)));
#endif

    check_cuda_error(cublasLtMatmulAlgoGetHeuristic(cublaslt_handle_,
                                                    matmulDesc,
                                                    Adesc,
                                                    Bdesc,
                                                    Cdesc,
                                                    Ddesc,
                                                    preference,
                                                    requestedAlgoCount,
                                                    &heuristicResult,
                                                    &returnedAlgoCount));

    {
        cublasStatus_t status = cublasLtMatmul(cublaslt_handle_,
                                               matmulDesc,
                                               alpha,
                                               kernel,
                                               Adesc,
                                               input,
                                               Bdesc,
                                               beta,
                                               res,
                                               Cdesc,
                                               res,
                                               Ddesc,
                                               &heuristicResult.algo,
                                               cublas_workspace_,
                                               wsSizeBytes,
                                               stream);
        check_cuda_error(status);
    }

    if (Ddesc) {
        check_cuda_error(cublasLtMatrixLayoutDestroy(Ddesc));
    }
    if (Bdesc) {
        check_cuda_error(cublasLtMatrixLayoutDestroy(Bdesc));
    }
    if (Adesc) {
        check_cuda_error(cublasLtMatrixLayoutDestroy(Adesc));
    }
    if (matmulDesc) {
        check_cuda_error(cublasLtMatmulDescDestroy(matmulDesc));
    }

    mu_->unlock();
}