maga_transformer/cpp/cuda/cuda_fp8_utils.h (189 lines of code) (raw):
/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifdef ENABLE_FP8
#include <cuda_fp8.h>
#include <cuda_runtime.h>
#include <stdint.h>
#define FP8_MHA
#define FUSE_GEMM_ACT
#define FP8_GEMM_OUTPUT_QUANT_DISABLE
#ifdef FUSE_GEMM_ACT
#define USE_QGMMA
#endif
namespace tensorrt_llm
{
namespace common
{
constexpr float FP8_E4M3_MAX = 448.0f;
enum QuantizeMode
{
PER_CHANNEL,
PER_TENSOR,
PER_CHANNEL_WEIGHT_PER_TENSOR_ACT,
PER_TOKEN,
};
// Packed Data Type
typedef struct __CUDA_ALIGN__(32)
{
float array[8];
} float8;
typedef struct __CUDA_ALIGN__(16)
{
half array[8];
} half8;
typedef struct __CUDA_ALIGN__(8)
{
half2 array[2];
} half2_2;
typedef struct __CUDA_ALIGN__(8)
{
half array[4];
} half_4;
#ifdef ENABLE_BF16
typedef struct __CUDA_ALIGN__(4)
{
__nv_bfloat16 array[2];
} __nv_bfloat16_2;
typedef struct __CUDA_ALIGN__(8)
{
__nv_bfloat162 x, y;
} __nv_bfloat162_2_xy;
typedef struct __CUDA_ALIGN__(8)
{
__nv_bfloat16 array[4];
} __nv_bfloat164;
typedef struct __CUDA_ALIGN__(8)
{
__nv_bfloat162 array[2];
} __nv_bfloat162_2;
typedef struct __CUDA_ALIGN__(16)
{
__nv_bfloat16 array[8];
} __nv_bfloat168;
typedef struct __CUDA_ALIGN__(16)
{
__nv_bfloat162 array[4];
} __nv_bfloat162_4;
typedef struct __CUDA_ALIGN__(32)
{
__nv_bfloat16 array[16];
} __nv_bfloat1616;
#endif
#ifdef ENABLE_FP8
typedef struct __CUDA_ALIGN__(2)
{
__nv_fp8_e4m3 array[2];
} __nv_fp8_2_e4m3;
typedef struct __CUDA_ALIGN__(4)
{
__nv_fp8_e4m3 array[4];
} __nv_fp8_4_e4m3;
typedef struct __CUDA_ALIGN__(4)
{
__nv_fp8x2_e4m3 array[2];
} __nv_fp8x2_x2_e4m3;
typedef struct __CUDA_ALIGN__(8)
{
__nv_fp8_e4m3 array[8];
} __nv_fp8_8_e4m3;
typedef struct __CUDA_ALIGN__(8)
{
__nv_fp8x2_e4m3 array[4];
} __nv_fp8x2_x4_e4m3;
typedef struct __CUDA_ALIGN__(16)
{
__nv_fp8_e4m3 array[16];
} __nv_fp8x16_e4m3;
#endif
// only BF16 and FP8
template <typename T, int PACK_SIZE>
struct PackType
{
using type = float;
};
#ifdef ENABLE_BF16
template <>
struct PackType<__nv_bfloat16, 2>
{
using type = __nv_bfloat16_2;
};
template <>
struct PackType<__nv_bfloat16, 4>
{
using type = __nv_bfloat164;
};
template <>
struct PackType<__nv_bfloat16, 8>
{
using type = __nv_bfloat168;
};
#endif
#ifdef ENABLE_FP8
template <>
struct PackType<__nv_fp8_e4m3, 2>
{
using type = __nv_fp8_2_e4m3;
};
template <>
struct PackType<__nv_fp8_e4m3, 4>
{
using type = __nv_fp8_4_e4m3;
};
template <>
struct PackType<__nv_fp8_e4m3, 8>
{
using type = __nv_fp8_8_e4m3;
};
#endif
__inline__ __device__ void fp8x4_e4m3_to_bfloat2(__nv_bfloat162* out1, __nv_bfloat162* out2, __nv_fp8x4_e4m3 const* in)
{
const char4 tmp_val = reinterpret_cast<char4 const*>(in)[0];
*out1 = __nv_bfloat162((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
*out2 = __nv_bfloat162((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.z)[0],
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.w)[0]);
}
__inline__ __device__ __nv_bfloat162 fp8x2_e4m3_to_bfloat2(__nv_fp8x2_e4m3 const* in)
{
const char2 tmp_val = reinterpret_cast<char2 const*>(in)[0];
__nv_bfloat162 out = __nv_bfloat162((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
return out;
}
__inline__ __device__ void fp8x4_e4m3_to_half2(half2* out1, half2* out2, __nv_fp8x4_e4m3 const* in)
{
const char4 tmp_val = reinterpret_cast<char4 const*>(in)[0];
*out1 = half2((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
*out2 = half2((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.z)[0],
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.w)[0]);
}
__inline__ __device__ half2 fp8x2_e4m3_to_half2(__nv_fp8x2_e4m3 const* in)
{
const char2 tmp_val = reinterpret_cast<char2 const*>(in)[0];
half2 out = half2((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
return out;
}
template <typename T_OUT, typename T_S, typename T_IN>
void invokeQuantizeMatrix(T_OUT* output, T_S const* input_qua_amax_ptr, T_IN const* input, int64_t numel, int64_t lda,
QuantizeMode quantize_mode, cudaStream_t stream);
template <typename T_OUT, typename T_S, typename T_IN>
void invokeDequantizeMatrix(T_OUT* output, T_S const* input_qua_amax_ptr, T_IN const* input, int64_t numel, int64_t lda,
QuantizeMode quantize_mode, cudaStream_t stream);
template <typename T_FAKE, typename T_OUT, typename T_IN>
void invokeFakeQuantize(T_OUT* dst, const T_IN* src, const int64_t numel, cudaStream_t stream);
template <typename T_S, typename T_W>
void invokeComputeFP8QuantizeScale(T_S* quant_ptr, const T_W* weights, const int64_t k, const int64_t lda,
QuantizeMode quantize_mode, cudaStream_t stream);
template <typename T_OUT, typename T_S, typename T_IN>
void invokeComputeScalesAndQuantizeMatrix(T_OUT* output, T_S* quant_ptr, const T_IN* weights, const int64_t numel,
const int64_t lda, QuantizeMode quantize_mode, cudaStream_t stream);
void invokeComputeFP8Quantize128(__nv_fp8_e4m3* fp8_output,
float* quant_ptr,
const __nv_bfloat16* weights,
const int64_t dim0,
const int64_t dim1,
const int64_t size,
bool col_major_scale,
cudaStream_t stream);
} // namespace common
} // namespace tensorrt_llm
#endif // ENABLE_FP8