maga_transformer/cpp/cuda/memory_utils.cu (753 lines of code) (raw):

/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "maga_transformer/cpp/cuda/cuda_type_utils.cuh" #include "maga_transformer/cpp/utils/Logger.h" #include "maga_transformer/cpp/cuda/memory_utils.h" #include <curand_kernel.h> #include <sys/stat.h> #include <unordered_map> namespace rtp_llm { template<typename T> void deviceMalloc(T** ptr, size_t size, bool is_random_initialize) { // RTP_LLM_CHECK_WITH_INFO(size >= ((size_t)0), "Ask deviceMalloc size " + std::to_string(size) + "< 0 is invalid."); check_cuda_error(cudaMalloc((void**)(ptr), sizeof(T) * size)); if (is_random_initialize) { cudaRandomUniform(*ptr, size); } } template void deviceMalloc(float** ptr, size_t size, bool is_random_initialize); template void deviceMalloc(half** ptr, size_t size, bool is_random_initialize); #ifdef ENABLE_BF16 template void deviceMalloc(__nv_bfloat16** ptr, size_t size, bool is_random_initialize); #endif template void deviceMalloc(uint16_t** ptr, size_t size, bool is_random_initialize); template void deviceMalloc(int** ptr, size_t size, bool is_random_initialize); template void deviceMalloc(bool** ptr, size_t size, bool is_random_initialize); template void deviceMalloc(char** ptr, size_t size, bool is_random_initialize); template void deviceMalloc(int8_t** ptr, size_t size, bool is_random_initialize); template void deviceMalloc(uint8_t** ptr, size_t size, bool is_random_initialize); #ifdef ENABLE_FP8 template void deviceMalloc(__nv_fp8_e4m3** ptr, size_t size, bool is_random_initialize); #endif template<typename T> void deviceMemSetZero(T* ptr, size_t size) { check_cuda_error(cudaMemset(static_cast<void*>(ptr), 0, sizeof(T) * size)); } template void deviceMemSetZero(float* ptr, size_t size); template void deviceMemSetZero(half* ptr, size_t size); template void deviceMemSetZero(int* ptr, size_t size); template void deviceMemSetZero(uint32_t* ptr, size_t size); template void deviceMemSetZero(bool* ptr, size_t size); #ifdef ENABLE_FP8 template void deviceMemSetZero(__nv_fp8_e4m3* ptr, size_t size); #endif #ifdef ENABLE_BF16 template void deviceMemSetZero(__nv_bfloat16* ptr, size_t size); #endif template<typename T> void deviceFree(T*& ptr) { if (ptr != NULL) { check_cuda_error(cudaFree(ptr)); ptr = NULL; } } template void deviceFree(float*& ptr); template void deviceFree(half*& ptr); #ifdef ENABLE_BF16 template void deviceFree(__nv_bfloat16*& ptr); #endif template void deviceFree(unsigned short*& ptr); template void deviceFree(int*& ptr); template void deviceFree(bool*& ptr); template void deviceFree(char*& ptr); template void deviceFree(int8_t*& ptr); template void deviceFree(uint8_t*& ptr); #ifdef ENABLE_FP8 template void deviceFree(__nv_fp8_e4m3*& ptr); #endif template<typename T> void deviceFill(T* devptr, size_t size, T value, cudaStream_t stream) { T* arr = new T[size]; std::fill(arr, arr + size, value); check_cuda_error(cudaMemcpyAsync(devptr, arr, sizeof(T) * size, cudaMemcpyHostToDevice, stream)); delete[] arr; } template void deviceFill(float* devptr, size_t size, float value, cudaStream_t stream); template void deviceFill(half* devptr, size_t size, half value, cudaStream_t stream); #ifdef ENABLE_BF16 template void deviceFill(__nv_bfloat16* devptr, size_t size, __nv_bfloat16 value, cudaStream_t stream); #endif template void deviceFill(int* devptr, size_t size, int value, cudaStream_t stream); template void deviceFill(bool* devptr, size_t size, bool value, cudaStream_t stream); template<typename T> void cudaD2Hcpy(T* tgt, const T* src, const size_t size) { check_cuda_error(cudaMemcpy(tgt, src, sizeof(T) * size, cudaMemcpyDeviceToHost)); } template void cudaD2Hcpy(float* tgt, const float* src, size_t size); template void cudaD2Hcpy(half* tgt, const half* src, size_t size); #ifdef ENABLE_BF16 template void cudaD2Hcpy(__nv_bfloat16* tgt, const __nv_bfloat16* src, size_t size); #endif template void cudaD2Hcpy(int* tgt, const int* src, size_t size); template void cudaD2Hcpy(bool* tgt, const bool* src, size_t size); #ifdef ENABLE_FP8 template void cudaD2Hcpy(__nv_fp8_e4m3* tgt, const __nv_fp8_e4m3* src, size_t size); #endif template void cudaD2Hcpy(unsigned long long* tgt, const unsigned long long* src, size_t size); template void cudaD2Hcpy(unsigned int* tgt, const unsigned int* src, size_t size); template void cudaD2Hcpy(int8_t* tgt, const int8_t* src, size_t size); template<typename T> void cudaH2Dcpy(T* tgt, const T* src, const size_t size) { check_cuda_error(cudaMemcpy(tgt, src, sizeof(T) * size, cudaMemcpyHostToDevice)); } template void cudaH2Dcpy(float* tgt, const float* src, size_t size); template void cudaH2Dcpy(half* tgt, const half* src, size_t size); #ifdef ENABLE_BF16 template void cudaH2Dcpy(__nv_bfloat16* tgt, const __nv_bfloat16* src, size_t size); #endif template void cudaH2Dcpy(int* tgt, const int* src, size_t size); template void cudaH2Dcpy(bool* tgt, const bool* src, size_t size); #ifdef ENABLE_FP8 template void cudaH2Dcpy(__nv_fp8_e4m3* tgt, const __nv_fp8_e4m3* src, size_t size); #endif template void cudaH2Dcpy(unsigned long long* tgt, const unsigned long long* src, size_t size); template void cudaH2Dcpy(unsigned int* tgt, const unsigned int* src, size_t size); template void cudaH2Dcpy(int8_t* tgt, const int8_t* src, size_t size); template<typename T> void cudaD2Dcpy(T* tgt, const T* src, const size_t size) { check_cuda_error(cudaMemcpy(tgt, src, sizeof(T) * size, cudaMemcpyDeviceToDevice)); } template void cudaD2Dcpy(float* tgt, const float* src, size_t size); template void cudaD2Dcpy(half* tgt, const half* src, size_t size); #ifdef ENABLE_BF16 template void cudaD2Dcpy(__nv_bfloat16* tgt, const __nv_bfloat16* src, size_t size); #endif template void cudaD2Dcpy(int* tgt, const int* src, size_t size); template void cudaD2Dcpy(bool* tgt, const bool* src, size_t size); template void cudaD2Dcpy(int8_t* tgt, const int8_t* src, size_t size); #ifdef ENABLE_FP8 template void cudaD2Dcpy(__nv_fp8_e4m3* tgt, const __nv_fp8_e4m3* src, size_t size); #endif template void cudaD2Dcpy(unsigned long long* tgt, const unsigned long long* src, size_t size); template<typename T_OUT, typename T_IN> __global__ void cudaCast(T_OUT* dst, T_IN* src, const size_t size) { for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x) { dst[tid] = (T_OUT)((float)(src[tid])); } } template<typename T_OUT, typename T_IN> void invokeCudaCast(T_OUT* dst, T_IN const* const src, const size_t size, cudaStream_t stream) { cudaCast<<<256, 256, 0, stream>>>(dst, src, size); } template void invokeCudaCast(float* dst, half const* const src, const size_t size, cudaStream_t stream); #ifdef ENABLE_BF16 template void invokeCudaCast(float* dst, __nv_bfloat16 const* const src, const size_t size, cudaStream_t stream); template void invokeCudaCast(__nv_bfloat16* dst, float const* const src, const size_t size, cudaStream_t stream); template void invokeCudaCast(__nv_bfloat16* dst, half const* const src, const size_t size, cudaStream_t stream); template void invokeCudaCast(half* dst, __nv_bfloat16 const* const src, const size_t size, cudaStream_t stream); #endif #ifdef ENABLE_FP8 template void invokeCudaCast(float* dst, __nv_fp8_e4m3 const* const src, const size_t size, cudaStream_t stream); template void invokeCudaCast(__nv_bfloat16* dst, __nv_fp8_e4m3 const* const src, const size_t size, cudaStream_t stream); template void invokeCudaCast(half* dst, __nv_fp8_e4m3 const* const src, const size_t size, cudaStream_t stream); template void invokeCudaCast(__nv_fp8_e4m3* dst, float const* const src, const size_t size, cudaStream_t stream); template void invokeCudaCast(__nv_fp8_e4m3* dst, __nv_bfloat16 const* const src, const size_t size, cudaStream_t stream); template void invokeCudaCast(__nv_fp8_e4m3* dst, half const* const src, const size_t size, cudaStream_t stream); #endif template<typename T> void cudaAutoCpy(T* tgt, const T* src, const size_t size, cudaStream_t stream) { if (stream != NULL) { check_cuda_error(cudaMemcpyAsync(tgt, src, sizeof(T) * size, cudaMemcpyDefault, stream)); } else { check_cuda_error(cudaMemcpy(tgt, src, sizeof(T) * size, cudaMemcpyDefault)); } } template void cudaAutoCpy(float* tgt, const float* src, size_t size, cudaStream_t stream); template void cudaAutoCpy(half* tgt, const half* src, size_t size, cudaStream_t stream); #ifdef ENABLE_BF16 template void cudaAutoCpy(__nv_bfloat16* tgt, const __nv_bfloat16* src, size_t size, cudaStream_t stream); #endif template void cudaAutoCpy(int* tgt, const int* src, size_t size, cudaStream_t stream); template void cudaAutoCpy(bool* tgt, const bool* src, size_t size, cudaStream_t stream); template void cudaAutoCpy(int8_t* tgt, const int8_t* src, size_t size, cudaStream_t stream); template void cudaAutoCpy(uint* tgt, const uint* src, size_t size, cudaStream_t stream); template void cudaAutoCpy(unsigned long long* tgt, const unsigned long long* src, size_t size, cudaStream_t stream); template void cudaAutoCpy(char* tgt, const char* src, size_t size, cudaStream_t stream); template void cudaAutoCpy(float const** tgt, float const* const* src, size_t size, cudaStream_t stream); template void cudaAutoCpy(half const** tgt, half const* const* src, size_t size, cudaStream_t stream); #ifdef ENABLE_BF16 template void cudaAutoCpy(__nv_bfloat16 const** tgt, __nv_bfloat16 const* const* src, size_t size, cudaStream_t stream); #endif template void cudaAutoCpy(int const** tgt, int const* const* src, size_t size, cudaStream_t stream); template void cudaAutoCpy(bool const** tgt, bool const* const* src, size_t size, cudaStream_t stream); template void cudaAutoCpy(int8_t const** tgt, int8_t const* const* src, size_t size, cudaStream_t stream); template void cudaAutoCpy(unsigned long long const** tgt, unsigned long long const* const* src, size_t size, cudaStream_t stream); template<typename T> __global__ void cuda_random_uniform_kernel(T* buffer, const size_t size, const int seq_offset) { const int idx = blockIdx.x * blockDim.x + threadIdx.x; curandState_t local_state; curand_init((unsigned long long int)1337, idx + seq_offset, 0, &local_state); for (size_t index = idx; index < size; index += blockDim.x * gridDim.x) { buffer[index] = (T)(curand_uniform(&local_state) * 0.2f - 0.1f); } } template<> __global__ void cuda_random_uniform_kernel<int>(int* buffer, const size_t size, const int seq_offset) { const int idx = blockIdx.x * blockDim.x + threadIdx.x; curandState_t local_state; curand_init((float)1337.f, idx + seq_offset, 0, &local_state); for (size_t index = idx; index < size; index += blockDim.x * gridDim.x) { buffer[index] = curand(&local_state); } } template<> __global__ void cuda_random_uniform_kernel<uint8_t>(uint8_t* buffer, const size_t size, const int seq_offset) { const int idx = blockIdx.x * blockDim.x + threadIdx.x; curandState_t local_state; curand_init((float)1337.f, idx + seq_offset, 0, &local_state); for (size_t index = idx; index < size; index += blockDim.x * gridDim.x) { buffer[index] = curand(&local_state); } } template<> __global__ void cuda_random_uniform_kernel<bool>(bool* buffer, const size_t size, const int seq_offset) { const int idx = blockIdx.x * blockDim.x + threadIdx.x; curandState_t local_state; curand_init((float)1337.f, idx + seq_offset, 0, &local_state); for (size_t index = idx; index < size; index += blockDim.x * gridDim.x) { buffer[index] = (curand(&local_state) % 2 == 0); } } template<> __global__ void cuda_random_uniform_kernel<char>(char* buffer, const size_t size, const int seq_offset) { const int idx = blockIdx.x * blockDim.x + threadIdx.x; curandState_t local_state; curand_init((float)1337.f, idx + seq_offset, 0, &local_state); for (size_t index = idx; index < size; index += blockDim.x * gridDim.x) { buffer[index] = curand(&local_state) % 0xFF; } } template<typename T> void cudaRandomUniform(T* buffer, const size_t size) { static int seq_offset = 0; cuda_random_uniform_kernel<T><<<256, 256>>>(buffer, size, seq_offset); seq_offset += 256 * 256; } template void cudaRandomUniform(float* buffer, const size_t size); template void cudaRandomUniform(half* buffer, const size_t size); template void cudaRandomUniform(uint8_t* buffer, const size_t size); #ifdef ENABLE_BF16 template void cudaRandomUniform(__nv_bfloat16* buffer, const size_t size); #endif template void cudaRandomUniform(int* buffer, const size_t size); template void cudaRandomUniform(bool* buffer, const size_t size); template void cudaRandomUniform(char* buffer, const size_t size); #ifdef ENABLE_FP8 template void cudaRandomUniform(__nv_fp8_e4m3* buffer, const size_t size); #endif // loads data from binary file. If it succeeds, returns a non-empty vector. If loading fails or // the product of the elements in shape is 0, this function will return an empty vector. template<typename T> std::vector<T> loadWeightFromBinHelper(std::vector<size_t> shape, std::string filename) { if (shape.size() > 2) { RTP_LLM_LOG_ERROR("shape should have less than two dims \n"); return std::vector<T>(); } size_t dim0 = shape[0], dim1 = 1; if (shape.size() == 2) { dim1 = shape[1]; } size_t size = dim0 * dim1; if (size == 0) { RTP_LLM_LOG_WARNING("shape is zero, skip loading weight from file %s \n", filename.c_str()); return std::vector<T>(); } std::vector<T> host_array(size); std::ifstream in(filename, std::ios::in | std::ios::binary); if (!in.is_open()) { RTP_LLM_LOG_WARNING("file %s cannot be opened, loading model fails! \n", filename.c_str()); return std::vector<T>(); } size_t loaded_data_size = sizeof(T) * size; in.seekg(0, in.end); in.seekg(0, in.beg); RTP_LLM_LOG_DEBUG("Read " + std::to_string(loaded_data_size) + " bytes from " + filename); in.read((char*)host_array.data(), loaded_data_size); size_t in_get_size = in.gcount(); if (in_get_size != loaded_data_size) { RTP_LLM_LOG_WARNING("file %s only has %ld, but request %ld, loading model fails! \n", filename.c_str(), in_get_size, loaded_data_size); return std::vector<T>(); } in.close(); // If we succeed, return an array with values. return host_array; } template<typename T, typename T_IN> int loadWeightFromBinFunc(T* ptr, std::vector<size_t> shape, std::string filename) { std::vector<T_IN> host_array = loadWeightFromBinHelper<T_IN>(shape, filename); if (host_array.empty()) { return 0; } if (std::is_same<T, T_IN>::value == true) { cudaH2Dcpy(ptr, (T*)host_array.data(), host_array.size()); } else { T_IN* ptr_2 = nullptr; deviceMalloc(&ptr_2, host_array.size(), false); cudaH2Dcpy(ptr_2, host_array.data(), host_array.size()); invokeCudaD2DcpyConvert(ptr, ptr_2, host_array.size()); deviceFree(ptr_2); } return 0; } template int loadWeightFromBinFunc<float, float>(float* ptr, std::vector<size_t> shape, std::string filename); template int loadWeightFromBinFunc<half, float>(half* ptr, std::vector<size_t> shape, std::string filename); template int loadWeightFromBinFunc<float, half>(float* ptr, std::vector<size_t> shape, std::string filename); template int loadWeightFromBinFunc<half, half>(half* ptr, std::vector<size_t> shape, std::string filename); template int loadWeightFromBinFunc<int8_t, int8_t>(int8_t* ptr, std::vector<size_t> shape, std::string filename); #ifdef ENABLE_BF16 template int loadWeightFromBinFunc<__nv_bfloat16, float>(__nv_bfloat16* ptr, std::vector<size_t> shape, std::string filename); template int loadWeightFromBinFunc<__nv_bfloat16, half>(__nv_bfloat16* ptr, std::vector<size_t> shape, std::string filename); template int loadWeightFromBinFunc<float, __nv_bfloat16>(float* ptr, std::vector<size_t> shape, std::string filename); template int loadWeightFromBinFunc<half, __nv_bfloat16>(half* ptr, std::vector<size_t> shape, std::string filename); template int loadWeightFromBinFunc<__nv_bfloat16, __nv_bfloat16>(__nv_bfloat16* ptr, std::vector<size_t> shape, std::string filename); #endif // ENABLE_BF16 template int loadWeightFromBinFunc<int, int>(int* ptr, std::vector<size_t> shape, std::string filename); #ifdef ENABLE_FP8 template int loadWeightFromBinFunc<__nv_fp8_e4m3, float>(__nv_fp8_e4m3* ptr, std::vector<size_t> shape, std::string filename); #endif // ENABLE_FP8 template<typename T> int loadWeightFromBin(T* ptr, std::vector<size_t> shape, std::string filename, FtCudaDataType model_file_type) { switch (model_file_type) { case FtCudaDataType::FP32: loadWeightFromBinFunc<T, float>(ptr, shape, filename); break; case FtCudaDataType::FP16: loadWeightFromBinFunc<T, half>(ptr, shape, filename); break; case FtCudaDataType::INT8: loadWeightFromBinFunc<T, int8_t>(ptr, shape, filename); break; #ifdef ENABLE_BF16 case FtCudaDataType::BF16: loadWeightFromBinFunc<T, __nv_bfloat16>(ptr, shape, filename); break; #endif #ifdef ENABLE_FP8 case FtCudaDataType::FP8: loadWeightFromBinFunc<T, float>(ptr, shape, filename); break; #endif default: RTP_LLM_LOG_ERROR("Does not support FtCudaDataType=%d", model_file_type); RTP_LLM_CHECK(false); } return 0; } template<> int loadWeightFromBin(int* ptr, std::vector<size_t> shape, std::string filename, FtCudaDataType model_file_type) { loadWeightFromBinFunc<int, int>(ptr, shape, filename); return 0; } template int loadWeightFromBin(float* ptr, std::vector<size_t> shape, std::string filename, FtCudaDataType model_file_type); template int loadWeightFromBin(half* ptr, std::vector<size_t> shape, std::string filename, FtCudaDataType model_file_type); template int loadWeightFromBin(int8_t* ptr, std::vector<size_t> shape, std::string filename, FtCudaDataType model_file_type); #ifdef ENABLE_BF16 template int loadWeightFromBin(__nv_bfloat16* ptr, std::vector<size_t> shape, std::string filename, FtCudaDataType model_file_type); #endif #ifdef ENABLE_FP8 template int loadWeightFromBin(__nv_fp8_e4m3* ptr, std::vector<size_t> shape, std::string filename, FtCudaDataType model_file_type); #endif template int loadWeightFromBin(int* ptr, std::vector<size_t> shape, std::string filename, FtCudaDataType model_file_type); template<typename T_IN, typename T_OUT> __global__ void cudaD2DcpyConvert(T_OUT* dst, const T_IN* src, const size_t size) { for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x) { dst[tid] = cuda_cast<T_OUT>(src[tid]); } } template<typename T_IN, typename T_OUT> void invokeCudaD2DcpyConvert(T_OUT* tgt, const T_IN* src, const size_t size, cudaStream_t stream) { cudaD2DcpyConvert<<<256, 256, 0, stream>>>(tgt, src, size); } template void invokeCudaD2DcpyConvert(int8_t* tgt, const float* src, const size_t size, cudaStream_t stream); template void invokeCudaD2DcpyConvert(float* tgt, const int8_t* src, const size_t size, cudaStream_t stream); template void invokeCudaD2DcpyConvert(float* tgt, const int* src, const size_t size, cudaStream_t stream); template void invokeCudaD2DcpyConvert(half* tgt, const int* src, const size_t size, cudaStream_t stream); template void invokeCudaD2DcpyConvert(float* tgt, const float* src, const size_t size, cudaStream_t stream); template void invokeCudaD2DcpyConvert(half* tgt, const float* src, const size_t size, cudaStream_t stream); template void invokeCudaD2DcpyConvert(float* tgt, const half* src, const size_t size, cudaStream_t stream); template void invokeCudaD2DcpyConvert(uint* tgt, const int* src, const size_t size, cudaStream_t stream); template void invokeCudaD2DcpyConvert(int* tgt, const uint* src, const size_t size, cudaStream_t stream); template void invokeCudaD2DcpyConvert(int* tgt, const float* src, const size_t size, cudaStream_t stream); template void invokeCudaD2DcpyConvert(int* tgt, const half* src, const size_t size, cudaStream_t stream); #ifdef ENABLE_BF16 template void invokeCudaD2DcpyConvert(__nv_bfloat16* tgt, const float* src, const size_t size, cudaStream_t stream); template void invokeCudaD2DcpyConvert(__nv_bfloat16* tgt, const int* src, const size_t size, cudaStream_t stream); template void invokeCudaD2DcpyConvert(float* tgt, const __nv_bfloat16* src, const size_t size, cudaStream_t stream); template void invokeCudaD2DcpyConvert(int* tgt, const __nv_bfloat16* src, const size_t size, cudaStream_t stream); #endif // ENABLE_BF16 template<typename T_IN, typename T_OUT> __global__ void cudaD2DScaleCpyConvert(T_OUT* dst, const T_IN* src, const float* scale, bool invert_scale, const size_t size) { const float scale_value = invert_scale ? 1.0f / scale[0] : scale[0]; for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x) { dst[tid] = cuda_cast<T_OUT>(cuda_cast<float>(src[tid]) * scale_value); } } template<typename T_IN, typename T_OUT> void invokeCudaD2DScaleCpyConvert( T_OUT* tgt, const T_IN* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream) { cudaD2DScaleCpyConvert<<<256, 256, 0, stream>>>(tgt, src, scale, invert_scale, size); } // clang-format off template void invokeCudaD2DScaleCpyConvert(float* tgt, const int32_t* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream); template void invokeCudaD2DScaleCpyConvert(int32_t* tgt, const float* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream); template void invokeCudaD2DScaleCpyConvert(half* tgt, const int32_t* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream); template void invokeCudaD2DScaleCpyConvert(int32_t* tgt, const half* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream); #ifdef ENABLE_BF16 template void invokeCudaD2DScaleCpyConvert(__nv_bfloat16* tgt, const int32_t* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream); template void invokeCudaD2DScaleCpyConvert(int32_t* tgt, const __nv_bfloat16* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream); #endif // ENABLE_BF16 #ifdef ENABLE_FP8 template void invokeCudaD2DScaleCpyConvert(float* tgt, const __nv_fp8_e4m3* src, const float* scale, bool invert_scale, const size_t size, cudaStream_t stream); #endif // ENABLE_FP8 // clang-format on void invokeCudaD2DcpyHalf2Float(float* dst, half* src, const size_t size, cudaStream_t stream) { invokeCudaD2DcpyConvert(dst, src, size, stream); } void invokeCudaD2DcpyFloat2Half(half* dst, float* src, const size_t size, cudaStream_t stream) { invokeCudaD2DcpyConvert(dst, src, size, stream); } template<typename T> void saveToBinary(const T* ptr, const size_t size, std::string filename) { std::vector<T> h_ptr(size); cudaD2Hcpy(h_ptr.data(), ptr, size); std::vector<float> float_ptr(size); for (int i = 0; i < size; i++) { float_ptr[i] = (float)h_ptr[i]; } std::ofstream out(filename, std::ios::out | std::ios::binary); RTP_LLM_CHECK_WITH_INFO(out.is_open(), "Fail to open file " + filename); out.write((char*)float_ptr.data(), size * sizeof(float)); } template void saveToBinary(const float* ptr, const size_t size, std::string filename); template void saveToBinary(const half* ptr, const size_t size, std::string filename); #ifdef ENABLE_BF16 template void saveToBinary(const __nv_bfloat16* ptr, const size_t size, std::string filename); #endif // ENABLE_BF16 template<> void saveToBinary(const int* ptr, const size_t size, std::string filename) { std::vector<int> h_ptr(size); cudaD2Hcpy(h_ptr.data(), ptr, size); std::ofstream out(filename, std::ios::out | std::ios::binary); RTP_LLM_CHECK_WITH_INFO(out.is_open(), "Fail to open file " + filename); out.write((char*)h_ptr.data(), size * sizeof(int)); } template<typename T_IN, typename T_fake_type> __global__ void fakeCast(T_IN* input_ptr, const size_t size) { for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += blockDim.x * gridDim.x) { T_fake_type tmp_val = (T_fake_type)((float)input_ptr[i]); input_ptr[i] = (T_IN)((float)tmp_val); } } template<typename T_IN, typename T_fake_type> void invokeFakeCast(T_IN* input_ptr, const size_t size, cudaStream_t stream) { dim3 block(256); dim3 grid((size + 255) / 256); fakeCast<T_IN, T_fake_type><<<grid, block, 0, stream>>>(input_ptr, size); } #ifdef ENABLE_FP8 __global__ void cudaD2Dcpyfp82Float(float* dst, __nv_fp8_e4m3* src, const size_t size) { for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x) { dst[tid] = (float)(src[tid]); } } void invokeCudaD2Dcpyfp82Float(float* dst, __nv_fp8_e4m3* src, const size_t size, cudaStream_t stream) { cudaD2Dcpyfp82Float<<<256, 256, 0, stream>>>(dst, src, size); } __global__ void cudaD2Dcpyfp82Half(half* dst, __nv_fp8_e4m3* src, const size_t size) { for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x) { dst[tid] = (half)((float)(src[tid])); } } void invokeCudaD2Dcpyfp82Half(half* dst, __nv_fp8_e4m3* src, const size_t size, cudaStream_t stream) { cudaD2Dcpyfp82Half<<<256, 256, 0, stream>>>(dst, src, size); } __global__ void cudaD2DcpyFloat2fp8(__nv_fp8_e4m3* dst, float* src, const size_t size) { for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x) { dst[tid] = (__nv_fp8_e4m3)src[tid]; } } void invokeCudaD2DcpyFloat2fp8(__nv_fp8_e4m3* dst, float* src, const size_t size, cudaStream_t stream) { cudaD2DcpyFloat2fp8<<<256, 256, 0, stream>>>(dst, src, size); } __global__ void cudaD2DcpyHalf2fp8(__nv_fp8_e4m3* dst, half* src, const size_t size) { for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x) { dst[tid] = (__nv_fp8_e4m3)src[tid]; } } void invokeCudaD2DcpyHalf2fp8(__nv_fp8_e4m3* dst, half* src, const size_t size, cudaStream_t stream) { cudaD2DcpyHalf2fp8<<<256, 256, 0, stream>>>(dst, src, size); } __global__ void cudaD2DcpyBfloat2fp8(__nv_fp8_e4m3* dst, __nv_bfloat16* src, const size_t size) { for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < size; tid += blockDim.x * gridDim.x) { dst[tid] = (__nv_fp8_e4m3)src[tid]; } } void invokeCudaD2DcpyBfloat2fp8(__nv_fp8_e4m3* dst, __nv_bfloat16* src, const size_t size, cudaStream_t stream) { cudaD2DcpyBfloat2fp8<<<256, 256, 0, stream>>>(dst, src, size); } #endif // ENABLE_FP8 template<typename T_OUT, typename T_IN> __global__ void transpose(T_OUT* dst, T_IN* src, const int dim0, const int dim1) { for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < dim0 * dim1; tid += blockDim.x * gridDim.x) { const int src_col_id = tid % dim1; const int src_row_id = tid / dim1; dst[src_col_id * dim0 + src_row_id] = (T_OUT)(src[tid]); } } template<typename T> void invokeInPlaceTranspose(T* data, T* workspace, const int dim0, const int dim1) { // copy data to workspace, and then transpose from workspace to data cudaD2Dcpy(workspace, data, dim0 * dim1); transpose<<<256, 256>>>(data, workspace, dim0, dim1); } #ifdef ENABLE_FP8 template void invokeInPlaceTranspose(__nv_fp8_e4m3* data, __nv_fp8_e4m3* workspace, const int dim0, const int dim1); #endif // ENABLE_FP8 #ifdef ENABLE_BF16 template void invokeInPlaceTranspose(__nv_bfloat16* data, __nv_bfloat16* workspace, const int dim0, const int dim1); #endif // ENABLE_BF16 template void invokeInPlaceTranspose(float* data, float* workspace, const int dim0, const int dim1); template<typename T_OUT, typename T_IN> __global__ void transpose0213(T_OUT* dst, T_IN* src, const int dim0, const int dim1, const int dim2, const int dim3) { // src permutation: [0, 1, 2, 3] // dst permutation: [0, 2, 1, 3] for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < dim0 * dim1 * dim2 * dim3; tid += blockDim.x * gridDim.x) { int tmp_idx = tid; const int dim_3_idx = tmp_idx % dim3; tmp_idx = (tmp_idx - dim_3_idx) / dim3; const int dim_2_idx = tmp_idx % dim2; tmp_idx = (tmp_idx - dim_2_idx) / dim2; const int dim_1_idx = tmp_idx % dim1; tmp_idx = (tmp_idx - dim_1_idx) / dim1; const int dim_0_idx = tmp_idx % dim0; dst[dim_0_idx * dim1 * dim2 * dim3 + dim_2_idx * dim1 * dim3 + dim_1_idx * dim3 + dim_3_idx] = src[tid]; } } template<typename T> void invokeInPlaceTranspose0213(T* data, T* workspace, const int dim0, const int dim1, const int dim2, const int dim3) { // copy data to workspace, and then transpose from workspace to data // Note that this kernel is used for pre-processing and not very efficient. cudaD2Dcpy(workspace, data, dim0 * dim1 * dim2 * dim3); transpose0213<<<256, 256>>>(data, workspace, dim0, dim1, dim2, dim3); } #ifdef ENABLE_FP8 template void invokeInPlaceTranspose0213( __nv_fp8_e4m3* data, __nv_fp8_e4m3* workspace, const int dim0, const int dim1, const int dim2, const int dim3); #endif // ENABLE_FP8 #ifdef ENABLE_BF16 template void invokeInPlaceTranspose0213( __nv_bfloat16* data, __nv_bfloat16* workspace, const int dim0, const int dim1, const int dim2, const int dim3); #endif // ENABLE_BF16 template void invokeInPlaceTranspose0213( float* data, float* workspace, const int dim0, const int dim1, const int dim2, const int dim3); template<typename T_OUT, typename T_IN> __global__ void transpose102(T_OUT* dst, T_IN* src, const int dim0, const int dim1, const int dim2) { // src permutation: [0, 1, 2] // dst permutation: [1, 0, 2] for (size_t tid = threadIdx.x + blockIdx.x * blockDim.x; tid < dim0 * dim1 * dim2; tid += blockDim.x * gridDim.x) { int tmp_idx = tid; const int dim_2_idx = tmp_idx % dim2; tmp_idx = (tmp_idx - dim_2_idx) / dim2; const int dim_1_idx = tmp_idx % dim1; tmp_idx = (tmp_idx - dim_1_idx) / dim1; const int dim_0_idx = tmp_idx % dim0; dst[dim_1_idx * dim0 * dim2 + dim_0_idx * dim2 + dim_2_idx] = src[tid]; } } template<typename T> void invokeInPlaceTranspose102(T* data, T* workspace, const int dim0, const int dim1, const int dim2) { // copy data to workspace, and then transpose from workspace to data // Note that this kernel is used for pre-processing and not very efficient. cudaD2Dcpy(workspace, data, dim0 * dim1 * dim2); transpose102<<<256, 256>>>(data, workspace, dim0, dim1, dim2); } #ifdef ENABLE_FP8 template void invokeInPlaceTranspose102( __nv_fp8_e4m3* data, __nv_fp8_e4m3* workspace, const int dim0, const int dim1, const int dim2); #endif // ENABLE_FP8 #ifdef ENABLE_BF16 template void invokeInPlaceTranspose102( __nv_bfloat16* data, __nv_bfloat16* workspace, const int dim0, const int dim1, const int dim2); #endif // ENABLE_BF16 template void invokeInPlaceTranspose102(float* data, float* workspace, const int dim0, const int dim1, const int dim2); template<typename T> void __global__ multiplyScale(T* tensor, float scale, const size_t size) { for (size_t index = threadIdx.x + blockIdx.x * blockDim.x; index < size; index += blockDim.x * gridDim.x) { tensor[index] = (T)(((float)tensor[index]) * scale); } } template<typename T> void invokeMultiplyScale(T* tensor, float scale, const size_t size, cudaStream_t stream) { int block = 256; int grid = (size + 255) / 256; multiplyScale<<<grid, block, 0, stream>>>(tensor, scale, size); } template void invokeMultiplyScale(float* tensor, float scale, const size_t size, cudaStream_t stream); template void invokeMultiplyScale(half* tensor, float scale, const size_t size, cudaStream_t stream); #ifdef ENABLE_BF16 template void invokeMultiplyScale(__nv_bfloat16* tensor, float scale, const size_t size, cudaStream_t stream); #endif #ifdef ENABLE_FP8 template void invokeMultiplyScale(__nv_fp8_e4m3* tensor, float scale, const size_t size, cudaStream_t stream); #endif template<typename T> void __global__ divideScale(T* tensor, float scale, const size_t size) { for (size_t index = threadIdx.x + blockIdx.x * blockDim.x; index < size; index += blockDim.x * gridDim.x) { tensor[index] = (T)(((float)tensor[index]) / scale); } } template<typename T> void invokeDivideScale(T* tensor, float scale, const size_t size, cudaStream_t stream) { int block = 256; int grid = (size + 255) / 256; divideScale<<<grid, block, 0, stream>>>(tensor, scale, size); } template void invokeDivideScale(float* tensor, float scale, const size_t size, cudaStream_t stream); template void invokeDivideScale(half* tensor, float scale, const size_t size, cudaStream_t stream); #ifdef ENABLE_BF16 template void invokeDivideScale(__nv_bfloat16* tensor, float scale, const size_t size, cudaStream_t stream); #endif #ifdef ENABLE_FP8 template void invokeDivideScale(__nv_fp8_e4m3* tensor, float scale, const size_t size, cudaStream_t stream); #endif #ifdef ENABLE_BF16 template void invokeFakeCast<float, __nv_bfloat16>(float* input_ptr, const size_t size, cudaStream_t stream); template void invokeFakeCast<__nv_bfloat16, __nv_bfloat16>(__nv_bfloat16* input_ptr, const size_t size, cudaStream_t stream); template void invokeFakeCast<half, __nv_bfloat16>(half* input_ptr, const size_t size, cudaStream_t stream); #endif template void invokeFakeCast<float, half>(float* input_ptr, const size_t size, cudaStream_t stream); template void invokeFakeCast<float, float>(float* input_ptr, const size_t size, cudaStream_t stream); #ifdef ENABLE_FP8 template void invokeFakeCast<float, __nv_fp8_e4m3>(float* input_ptr, const size_t size, cudaStream_t stream); template void invokeFakeCast<half, __nv_fp8_e4m3>(half* input_ptr, const size_t size, cudaStream_t stream); template void invokeFakeCast<__nv_bfloat16, __nv_fp8_e4m3>(__nv_bfloat16* input_ptr, const size_t size, cudaStream_t stream); #endif size_t cuda_datatype_size(FtCudaDataType dt) { static const std::unordered_map<FtCudaDataType, size_t> sizes{{FtCudaDataType::FP32, sizeof(float)}, {FtCudaDataType::FP16, sizeof(half)} #ifdef ENABLE_BF16 , {FtCudaDataType::BF16, sizeof(__nv_bfloat16)} #endif }; return sizes.at(dt); } template<typename T> __global__ void check_range(T* buffer, size_t size, T min, T max, bool* d_within_range) { for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += blockDim.x * gridDim.x) { const T val = buffer[i]; if (val < min || val > max) { *d_within_range = false; } } } template<typename T> bool invokeCheckRange(T* buffer, const size_t size, T min, T max, bool* d_within_range, cudaStream_t stream) { cudaMemsetAsync(d_within_range, true, sizeof(bool), stream); dim3 block(256); dim3 grid((size + 255) / 256); check_range<T><<<grid, block, 0, stream>>>(buffer, size, min, max, d_within_range); bool result; cudaD2Hcpy(&result, d_within_range, 1); return result; } template bool invokeCheckRange<int>(int* buffer, const size_t size, int min, int max, bool* d_within_range, cudaStream_t stream); } // namespace rtp_llm