maga_transformer/cpp/devices/rocm_impl/ROCmSampleOp.cc (266 lines of code) (raw):

#include "maga_transformer/cpp/devices/rocm_impl/ROCmDevice.h" #include "maga_transformer/cpp/devices/CommonDefines.h" #include "maga_transformer/cpp/kernels/sampling_topk_kernels.h" #include "maga_transformer/cpp/kernels/sampling_topp_kernels.h" #include "maga_transformer/cpp/kernels/sampling_penalty_kernels.h" #include "maga_transformer/cpp/cuda/memory_utils.h" using namespace std; namespace rtp_llm { using SamplerT = float; // batch sampling explained: // topk = [4, 0, 4]. topp = [0.0, 0.5, 0.5] // then topk_decode handles [4, x, 4 + 0.5] // topp_decode handles [x, 0.5, x] // where "x" are skipped. // topk should has higher proirity than topp. GreedyOutput ROCmDevice::sampleGreedy(const GreedyParams& params) { const auto& logits = params.logits; const auto batch_size = logits.shape()[0]; RUNTIME_ASSERT_OP_ARG(batch_size < init_params_.max_batch_size, "batch_size exceeded device limit %d: %d", init_params_.max_batch_size, batch_size); const auto vocab_size_padded = logits.shape()[1]; const auto step = params.step; RUNTIME_ASSERT_OP_ARG(batch_size == params.token_ids.shape()[0], "logits.shape[0] should equal to token_ids.shape[0], but %d vs %d", batch_size, params.token_ids.shape()[0]); RUNTIME_ASSERT_OP_ARG((step == params.token_ids.shape()[1] - 1), "step should equal to token_ids.shape[1] - 1, but %d vs %d", step, params.token_ids.shape()[1] - 1); auto device_tokens = clone({params.token_ids}); auto transposed_tokens = transpose({*device_tokens}); // 1. prepare buffers auto& top_k = params.top_k; auto& top_p = params.top_p; auto& temperature = params.temperature; auto& random_seed = params.random_seed; ROCM_CHECK_VALUE(top_k.size() == batch_size, "top_k.size() != batch_size"); ROCM_CHECK_VALUE(top_p.size() == batch_size, "top_p.size() != batch_size"); ROCM_CHECK_VALUE(temperature.size() == batch_size, "temperature.size() != batch_size"); auto default_top_k = top_k.data<uint32_t>()[0]; auto default_top_p = top_p.data<float>()[0]; auto max_top_k = *max_element(top_k.data<uint32_t>(), top_k.dataWithOffset<uint32_t>(top_k.size())); if (max_top_k == 0) { // for safety. TopKSamplingLayer handles a case of top_k=0 and top_p=0 as // a greedy decode, i.e. top_k=1, although such case has max_top_k=0. max_top_k = 1; } auto max_top_p = *max_element(top_p.data<SamplerT>(), top_p.dataWithOffset<SamplerT>(top_p.size())); // RTP_LLM_LOG_WARNING("max_top_k: %d, max_top_p: %f", max_top_k, max_top_p); size_t topk_ws_size; size_t topp_ws_size; size_t cub_temp_storage_size; // useless variable // these two kernel calls are only for querying workspace size, // all the args are ignored. invokeTopKSampling<SamplerT>(nullptr, topk_ws_size, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, max_top_k, max_top_p, vocab_size_padded, nullptr, nullptr, stream_, batch_size, nullptr); invokeTopPSampling<SamplerT>(nullptr, // workspace topp_ws_size, cub_temp_storage_size, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, batch_size, vocab_size_padded, nullptr, max_top_p, nullptr, stream_, &device_prop_, nullptr); // RTP_LLM_LOG_WARNING("topk_ws_size: %d, topp_ws_size: %d", topk_ws_size, topp_ws_size); // see BaseSamplingLayer<T>::allocateBuffer ------------------ auto skip_top_k_decode_buf = allocateBuffer({DataType::TYPE_BOOL, {batch_size}}); auto skip_top_p_decode_buf = allocateBuffer({DataType::TYPE_BOOL, {batch_size}}); auto topp_id_vals_buf = allocateBuffer({DataType::TYPE_INT32, {batch_size * vocab_size_padded}}); auto topp_offset_buf = allocateBuffer({DataType::TYPE_INT32, {batch_size + 1}}); auto begin_topp_offset_buf = allocateBuffer({DataType::TYPE_INT32, {batch_size + 1}}); // TopKSamplingLayer<T>::allocateBuffer auto top_k_workspace = allocateBuffer({topk_ws_size}); auto top_p_workspace = allocateBuffer({topp_ws_size}); auto runtime_top_k_buf = allocateBuffer({DataType::TYPE_UINT32, {batch_size}}); copy({*runtime_top_k_buf, top_k}); auto runtime_top_p_buf = allocateBuffer({DataType::TYPE_FP32, {batch_size}}); copy({*runtime_top_p_buf, top_p}); auto cum_log_probs = params.cum_log_probs.has_value() ? params.cum_log_probs.value().get().data<float>() : nullptr; auto output_log_probs = params.output_log_probs.has_value() ? params.output_log_probs.value().get().data<float>() : nullptr; auto output_all_probs = params.output_all_probs.has_value() ? params.output_all_probs.value().get().data<float>() : nullptr; // 3. prepare common inputs // 3.1. setup random seeds if (random_seed) { auto& seeds = random_seed.value().get(); if (seeds.size() == 1) { invokeCurandInitialize( (curandState_t *)curandstate_buf_->data(), batch_size, seeds.data<uint64_t>()[0], stream_); } else { auto random_seeds_buf = allocateBuffer({DataType::TYPE_UINT64, {batch_size}}); RUNTIME_ASSERT_OP_ARG((seeds.size() == batch_size), "random_seed.size() should equal to batch_size, but %d vs %d", seeds.size(), batch_size); copy({*random_seeds_buf, seeds}); invokeCurandBatchInitialize( (curandState_t *)curandstate_buf_->data(), batch_size, (unsigned long long *)random_seeds_buf->data(), stream_); } } // 3.2. compute logits penalty if (std::any_of(temperature.data<float>(), temperature.data<float>() + batch_size, [&](auto t) { return t != 1.0f; })) { BufferPtr temperature_buf = allocateBuffer({DataType::TYPE_FP32, {batch_size}}); copy({*temperature_buf, temperature}); invokeBatchApplyTemperaturePenalty( logits.data<float>(), (float *)nullptr, // embedding_bias temperature_buf->data<float>(), batch_size, vocab_size_padded, vocab_size_padded, stream_); } const auto decoder_batch_size = params.sequence_lengths.shape()[0]; if (decoder_batch_size) { auto sequence_lengths = clone({params.sequence_lengths}); auto input_lengths = clone({params.input_lengths}); if (step > 1 && params.repetition_penalty && decoder_batch_size) { auto& repetition_penalty = params.repetition_penalty->get(); if (std::any_of(repetition_penalty.data<float>(), repetition_penalty.data<float>() + batch_size, [&](auto t) { return t != 1.0f; })) { const auto repetition_penalty_type = RepetitionPenaltyType::Multiplicative; auto repetition_penalty_buf = allocateBuffer({DataType::TYPE_FP32, {batch_size}}); auto penalty_logits = allocateBuffer({DataType::TYPE_FP32, {batch_size * 64 * 1024}}); copy({*repetition_penalty_buf, repetition_penalty}); invokeBatchApplyRepetitionPenalty( logits.data<float>(), penalty_logits->data<float>(), repetition_penalty_buf->data<float>(), transposed_tokens->data<int32_t>(), batch_size, batch_size, // local_batch_size vocab_size_padded, sequence_lengths->data<int32_t>(), step + 1, // max_input_length step + 1, // step repetition_penalty_type, stream_); // NOTE: here step is max_len - 1 } } } if (params.min_lengths && params.eos_ids) { auto min_lengths_buf = clone({params.min_lengths.value().get()}); // move this to NormalExecutor auto sequence_lengths = clone({params.sequence_lengths}); auto input_lengths = clone({params.input_lengths}); invokeMinLengthPenaltyNew( logits.data<float>(), min_lengths_buf->data<int32_t>(), params.eos_ids.value().get().data<int32_t>(), sequence_lengths->data<int32_t>(), input_lengths->data<int32_t>(), decoder_batch_size, batch_size, vocab_size_padded, stream_); } // 4. run sampling // 4.1 run top_k invokeSetupTopKRuntimeArgs(batch_size, default_top_k, runtime_top_k_buf->data<uint>(), batch_size, default_top_p, runtime_top_p_buf->data<float>(), batch_size, skip_top_k_decode_buf->data<bool>(), stream_); invokeBatchTopKSampling( top_k_workspace->data(), topk_ws_size, logits.data<float>(), transposed_tokens->dataWithOffset<int32_t>(step * batch_size), nullptr, // sequence_length nullptr, // finished cum_log_probs, output_log_probs, (curandState_t *)curandstate_buf_->data(), max_top_k, // useless because runtime_top_k_buf_ is never nullptr. Keep for legacy. (int32_t*)runtime_top_k_buf->data<uint32_t>(), 1.0f, // useless because runtime_top_p_buf_ is never nullptr. Keep for legacy. runtime_top_p_buf->data<float>(), vocab_size_padded, nullptr, // end_id output_all_probs, stream_, batch_size, skip_top_k_decode_buf->data<bool>()); // 4.2. run top_p // NOTE: running top_k could write values to runtime bufs, so need to copy again. copy({*runtime_top_k_buf, top_k}); copy({*runtime_top_p_buf, top_p}); invokeSetupTopPRuntimeArgs(batch_size, default_top_k, runtime_top_k_buf->data<uint>(), batch_size, default_top_p, runtime_top_p_buf->data<float>(), batch_size, skip_top_p_decode_buf->data<bool>(), nullptr, // initial_top_p_buf, nullptr, // top_p_decay_buf, nullptr, nullptr, // top_p_min_buf, nullptr, nullptr, // top_p_reset_ids_buf, nullptr, stream_); invokeTopPInitialize( topp_id_vals_buf->data<int32_t>(), topp_offset_buf->data<int32_t>(), begin_topp_offset_buf->data<int32_t>(), batch_size, vocab_size_padded, stream_); invokeAddBiasSoftMax( logits.data<SamplerT>(), (SamplerT *)nullptr, // bias nullptr, // end_id nullptr, // finished batch_size, vocab_size_padded, vocab_size_padded, stream_); invokeBatchTopPSampling( top_p_workspace->data(), topp_ws_size, cub_temp_storage_size, transposed_tokens->dataWithOffset<int32_t>(step * batch_size), nullptr, // sequence_length nullptr, // finished cum_log_probs, output_log_probs, logits.data<float>(), topp_id_vals_buf->data<int32_t>(), topp_offset_buf->data<int32_t>(), begin_topp_offset_buf->data<int32_t>(), (curandState_t *)curandstate_buf_->data(), batch_size, vocab_size_padded, nullptr, // end_id max_top_p, runtime_top_p_buf->data<float>(), output_all_probs, stream_, &device_prop_, skip_top_p_decode_buf->data<bool>()); auto output_tokens = transpose({*transposed_tokens}); copy({params.token_ids, *output_tokens}); sync_check_cuda_error(); return GreedyOutput{}; } } // namespace rtp_llm