maga_transformer/cpp/kernels/layernorm_kernels.cu (652 lines of code) (raw):
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "maga_transformer/cpp/cuda/cuda_type_utils.cuh"
#include "maga_transformer/cpp/kernels/layernorm_kernels.h"
#include "maga_transformer/cpp/cuda/reduce_kernel_utils.cuh"
#if ENABLE_TRITON
#include "maga_transformer/cpp/kernels/triton/layernorm_kernels.h"
#endif
#if USING_ROCM
#include "maga_transformer/cpp/rocm/hip_utils.h"
#endif
// wont't support new features
namespace rtp_llm{
#if USING_ROCM
using namespace rocm;
#endif
__device__ __forceinline__ int64_t loadOffset(int head_num,
int size_per_head)
{
// [[q_head_1],[q_head_2]...[k_head_1],[k_head_2]...[v_head_1],[v_head_2]...]
int head_id = blockIdx.y;
int batch_id = blockIdx.x;
int offset = batch_id * head_num * size_per_head + size_per_head * head_id;
return offset;
}
__device__ __forceinline__ int64_t loadOffsetStrided(const int stride, const int n_elems)
{
return blockIdx.x * stride / n_elems;
}
template<typename T>
__global__ void qkLayerNorm(T* __restrict qkv,
const T* __restrict gamma,
const float layernorm_eps,
int head_num,
int size_per_head)
{
constexpr auto num_elems_T = num_elems<T>::value;
constexpr size_t warp_size = 32;
const int vec_size_per_head = size_per_head / num_elems_T;
const int n_elems = vec_size_per_head / warp_size;
using float_packed_t = typename packed_as<float, num_elems_T>::type;
const int tid = threadIdx.x;
__shared__ float s_mean;
__shared__ float s_variance;
float mean = 0.0f;
float variance = 0.0f;
float local_sum = 0.0f;
for (int i = 0; i < n_elems; i++) {
auto index = loadOffset(head_num, vec_size_per_head) + tid * n_elems + i;
auto val_f = cuda_cast<float_packed_t>(ldg(&qkv[index]));
local_sum += cuda_sum<float>(val_f);
}
mean = warpReduceSum(local_sum);
if (threadIdx.x == 0) {
s_mean = mean / size_per_head;
}
__syncthreads();
float local_var_sum = 0.0f;
for (int i = 0; i < n_elems; i++) {
auto index = loadOffset(head_num, vec_size_per_head) + tid * n_elems + i;
auto val_f = cuda_cast<float_packed_t>(ldg(&qkv[index]));
auto diff = val_f - s_mean;
local_var_sum += cuda_sum<float>(diff * diff);
}
variance = warpReduceSum(local_var_sum);
if (threadIdx.x == 0) {
s_variance = rsqrtf(variance / size_per_head + layernorm_eps);
}
__syncthreads();
for (int i = 0; i < n_elems; i++) {
auto index = loadOffset(head_num, vec_size_per_head) + tid * n_elems + i;
auto gamma_index = blockIdx.y * vec_size_per_head + tid * n_elems + i;
auto val_f = cuda_cast<float_packed_t>(ldg(&qkv[index]));
auto val_gamma = cuda_cast<float_packed_t>(gamma[gamma_index]);
qkv[index] = cuda_cast<T>((val_f - s_mean) * s_variance * val_gamma);
}
}
template<typename T, bool IS_BIAS>
__global__ void layerNormWithStride(T* __restrict output,
const int out_stride,
const T* __restrict input,
const int in_stride,
const T* __restrict gamma,
const T* __restrict beta,
const float layernorm_eps,
const int n, // 总特征维度
const int norm_size)
{
constexpr auto num_elems_T = num_elems<T>::value; // 向量化元素数
constexpr size_t warp_size = 32;
const int n_elems = norm_size / num_elems_T / warp_size;
using float_packed_t = typename packed_as<float, num_elems_T>::type;
const int tid = threadIdx.x;
const int sample_idx = blockIdx.x / (n / norm_size); // 样本索引
const int head_idx = blockIdx.x % (n / norm_size); // 头/窗口索引
__shared__ float s_mean;
__shared__ float s_variance;
// 计算当前窗口的起始位置
const T* sample_start = input + sample_idx * (in_stride / num_elems_T);
T* output_start = output + sample_idx * (out_stride / num_elems_T);
const T* head_start = sample_start + head_idx * (norm_size / num_elems_T);
T* out_head_start = output_start + head_idx * (norm_size / num_elems_T);
// Stage 1: 计算均值
float local_sum = 0.0f;
#pragma unroll
for (int i = 0; i < n_elems; i++) {
int elem_idx = i * warp_size + tid;
auto val_f = cuda_cast<float_packed_t>(ldg(&head_start[elem_idx]));
local_sum += cuda_sum<float>(val_f);
}
float mean = warpReduceSum(local_sum);
if (tid == 0) {
s_mean = mean / norm_size;
}
__syncthreads();
float local_var_sum = 0.0f;
#pragma unroll
for (int i = 0; i < n_elems; i++) {
int elem_idx = i * warp_size + tid;
auto val_f = cuda_cast<float_packed_t>(ldg(&head_start[elem_idx]));
auto diff = val_f - s_mean;
local_var_sum += cuda_sum<float>(diff * diff);
}
float variance = warpReduceSum(local_var_sum);
if (tid == 0) {
s_variance = rsqrtf(variance / norm_size + layernorm_eps);
}
__syncthreads();
#pragma unroll
for (int i = 0; i < n_elems; i++) {
int elem_idx = i * warp_size + tid;
auto val_f = cuda_cast<float_packed_t>(ldg(&head_start[elem_idx]));
auto gamma_val = cuda_cast<float_packed_t>(gamma[elem_idx]);
if (IS_BIAS) {
auto beta_val = cuda_cast<float_packed_t>(beta[elem_idx]);
val_f = (val_f - s_mean) * s_variance * gamma_val + beta_val;
} else {
val_f = (val_f - s_mean) * s_variance * gamma_val;
}
out_head_start[elem_idx] = cuda_cast<T>(val_f);
}
}
template<typename T>
void invokeQkLayerNorm(T* __restrict qkv,
const T* __restrict gamma,
const float layernorm_eps,
const int tokens,
const int head_num,
const int head_num_kv,
const int size_per_head,
cudaStream_t stream)
{
constexpr size_t vec_size = 2;
constexpr size_t warp_size = 32;
if (size_per_head % warp_size != 0) {
throw std::invalid_argument("not supported size_per_head: " + std::to_string(size_per_head));
}
dim3 grid(tokens, head_num + head_num_kv);
dim3 block(warp_size);
int total_head_num = head_num + 2 * head_num_kv;
using Tp = typename packed_as<T, vec_size>::type;
qkLayerNorm<Tp><<<grid, block, 0, stream>>>(reinterpret_cast<Tp*>(qkv), reinterpret_cast<const Tp*>(gamma),
layernorm_eps, total_head_num, size_per_head);
}
template<typename T>
void invokeLayerNormWithStride(T* __restrict output,
const int out_stride,
const T* __restrict input,
const int in_stride,
const T* __restrict gamma,
const T* __restrict beta,
const float layernorm_eps,
const int m,
const int n,
const int norm_size,
cudaStream_t stream) {
constexpr size_t vec_size = 2;
constexpr size_t warp_size = 32;
// 参数校验
if (n % norm_size != 0) {
throw std::invalid_argument("n:" + std::to_string(n) + " must be divisible by norm_size:" + std::to_string(norm_size));
}
if (norm_size % (warp_size * vec_size) != 0) {
throw std::invalid_argument("norm_size must be multiple of " +
std::to_string(warp_size * vec_size));
}
const int num_heads = n / norm_size;
dim3 grid(m * num_heads); // 每个block处理一个样本的一个头
dim3 block(warp_size);
using Tp = typename packed_as<T, vec_size>::type;
bool is_bias = beta != nullptr;
if (is_bias) {
layerNormWithStride<Tp, true><<<grid, block, 0, stream>>>(reinterpret_cast<Tp*>(output), out_stride, reinterpret_cast<const Tp*>(input), in_stride,
reinterpret_cast<const Tp*>(gamma),
reinterpret_cast<const Tp*>(beta),
layernorm_eps, n, norm_size);
} else {
layerNormWithStride<Tp, false><<<grid, block, 0, stream>>>(reinterpret_cast<Tp*>(output), out_stride, reinterpret_cast<const Tp*>(input), in_stride,
reinterpret_cast<const Tp*>(gamma),
nullptr,
layernorm_eps, n, norm_size);
}
}
#define INSTANTIATE_QK_LAYERNORM(T) \
template void invokeQkLayerNorm(T* __restrict qkv, \
const T* __restrict gamma, \
const float layernorm_eps, \
const int tokens, \
const int head_num, \
const int head_num_kv, \
const int size_per_head, \
cudaStream_t stream)
INSTANTIATE_QK_LAYERNORM(float);
INSTANTIATE_QK_LAYERNORM(half);
#ifdef ENABLE_BF16
INSTANTIATE_QK_LAYERNORM(__nv_bfloat16);
#endif
#undef INSTANTIATE_QK_LAYERNORM
#define INSTANTIATE_STRIDED_LAYERNORM(T) \
template void invokeLayerNormWithStride(T* __restrict output, \
const int out_stride, \
const T* __restrict input, \
const int in_stride, \
const T* __restrict gamma, \
const T* __restrict beta, \
const float layernorm_eps, \
const int m, \
const int n, \
const int norm_size, \
cudaStream_t stream);
INSTANTIATE_STRIDED_LAYERNORM(float);
INSTANTIATE_STRIDED_LAYERNORM(half);
#ifdef ENABLE_BF16
INSTANTIATE_STRIDED_LAYERNORM(__nv_bfloat16);
#endif
#undef INSTANTIATE_STRIDED_LAYERNORM
template <typename Tf, typename T, bool IS_BETA>
__inline__ __device__ Tf compute_layernorm(Tf val, float s_mean, float s_variance, const T* gamma, const T* beta, int i)
{
Tf ret = (val - s_mean) * s_variance * cuda_cast<Tf>(gamma[i]);
if (IS_BETA)
{
ret = ret + cuda_cast<Tf>(beta[i]);
}
return ret;
}
/* Computes the layernorm https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
* normed_output <- ( (input - E[input]) / Sqrt(Var[input] + eps) ) * gamma + beta
* input is [tokens, hidden_dim]. Mean and Variance are per-row (i.e. per-token)
*
* One CTA handles one row.
*
* with USE_DIFF_OF_SQUARES set to false:
* First pass (loop) computes the mean.
* Second computes the variance via Var[x] = E[(x - E[x])²].
* Third pass computes and writes normed_output
*
* with USE_DIFF_OF_SQUARES set to true (may be faster but less accurate):
* First pass (loop) computes the mean and variance via Var[x] = E[x²] - E[x]²
* Second pass computes and writes normed_output
*
* use_shmem controls if we cache input values into shared memory
*
* Optional: with dynamic scaling, the last pass doesn't write immediately but finds the
* amax per row. A final pass scales to int8 accordingly, and writes output to
* normed_output_quant.
*/
template <typename T, typename QUANT_OUT_T, bool IS_OUTPUT, bool IS_BIAS, bool RESIDUAL, bool IS_BETA, bool RETURN_NORMED_OUTPUT, bool USE_DIFF_OF_SQUARES = false>
__global__ void generalLayerNorm(T* output, T* normed_output, const T* input, const T* bias, const T* residual,
const T* gamma, const T* beta, const float eps, int tokens, int hidden_dim,
const float* scale_orig_quant_per_tensor, float* scale_orig_quant_per_token, QUANT_OUT_T* normed_output_quant)
{
constexpr auto num_elems_T = num_elems<T>::value;
using quant_packed_t = typename packed_as<QUANT_OUT_T, num_elems_T>::type;
using Int32_Packed_T = typename packed_as<int32_t, num_elems_T>::type;
using float_packed_t = typename packed_as<float, num_elems_T>::type;
using T_scalar = typename packed_as<T, 1>::type;
extern __shared__ __align__(sizeof(float)) char _shmem[];
T* shmem = reinterpret_cast<T*>(_shmem);
__shared__ float s_mean;
__shared__ float s_variance;
const int tidx = threadIdx.x;
const int bidx = blockIdx.x;
float mean = 0.0f;
float variance = 0.0f;
float local_sum = 0.0f;
float local_var_sum = 0.0f;
const bool with_per_token_scaling = scale_orig_quant_per_token != nullptr;
const bool with_per_tensor_scaling = scale_orig_quant_per_tensor != nullptr;
const float_packed_t scale_orig_quant
= cuda_cast<float_packed_t>(with_per_tensor_scaling ? *scale_orig_quant_per_tensor : 0.0f);
T_scalar amax = getAmax<QUANT_OUT_T>();
const int n_elems = hidden_dim / num_elems_T;
for (int i = tidx; i < n_elems; i += blockDim.x)
{
// const T val = input[bidx * n_elems + i];
const int index = bidx * n_elems + i;
T val = input[index];
// const T val = input[index];
if (IS_BIAS)
{
val = add(val, ldg(&bias[i]));
}
if (RESIDUAL)
{
val = add(val, ldg(&residual[index]));
}
if (IS_OUTPUT && !RETURN_NORMED_OUTPUT)
{
output[index] = val;
}
shmem[i] = val;
const float_packed_t val_f = cuda_cast<float_packed_t>(val);
local_sum += cuda_sum<float>(val_f);
if (USE_DIFF_OF_SQUARES)
{
local_var_sum += cuda_sum<float>(val_f * val_f);
}
}
if (USE_DIFF_OF_SQUARES)
{
float packed[2] = {local_sum, local_var_sum};
blockReduceSumV2<float, 2>(packed);
mean = packed[0];
variance = packed[1];
}
else
{
mean = blockReduceSum(local_sum);
}
if (threadIdx.x == 0)
{
mean = mean / hidden_dim;
s_mean = mean;
if (USE_DIFF_OF_SQUARES)
{
variance = (variance / hidden_dim) - (mean * mean); // Var[x] = E[x²] - E[x]²
s_variance = rsqrtf(variance + eps);
}
}
__syncthreads();
if (!USE_DIFF_OF_SQUARES)
{
for (int i = tidx; i < n_elems; i += blockDim.x)
{
const T val = shmem[i];
float_packed_t diff = cuda_cast<float_packed_t>(val) - s_mean;
local_var_sum += cuda_sum<float>(diff * diff);
}
variance = blockReduceSum(local_var_sum);
if (threadIdx.x == 0)
{
s_variance = rsqrtf(variance / hidden_dim + eps);
}
__syncthreads();
}
for (int i = tidx; i < n_elems; i += blockDim.x)
{
const int index = bidx * n_elems + i;
const float_packed_t val_f = cuda_cast<float_packed_t>(shmem[i]);
const T val
= cuda_cast<T>(compute_layernorm<float_packed_t, T, IS_BETA>(val_f, s_mean, s_variance, gamma, beta, i));
if (RETURN_NORMED_OUTPUT && IS_OUTPUT) {
output[index] = val;
}
if (with_per_token_scaling)
{
amax = cuda_max(cuda_max<T_scalar, T>(cuda_abs(val)), amax);
shmem[i] = val;
}
else if (with_per_tensor_scaling)
{
reinterpret_cast<quant_packed_t*>(normed_output_quant)[index]
= cuda_cast<quant_packed_t>(cuda_cast<float_packed_t>(val) * scale_orig_quant);
}
else
{
normed_output[index] = val;
}
}
if (with_per_token_scaling)
{
float abs_max_f = blockAllReduceMax(cuda_cast<float>(amax));
const float scale_factor = getScaleFactor<QUANT_OUT_T>();
const float dynamic_per_token_scale = scale_factor / abs_max_f;
for (int i = tidx; i < n_elems; i += blockDim.x)
{
const int index = bidx * n_elems + i;
float_packed_t val_f = cuda_cast<float_packed_t>(shmem[i]);
reinterpret_cast<quant_packed_t*>(normed_output_quant)[index]
= cuda_cast<quant_packed_t>(val_f * cuda_cast<float_packed_t>(dynamic_per_token_scale));
}
if (tidx == 0)
{
scale_orig_quant_per_token[bidx] = abs_max_f / scale_factor;
}
}
}
template <typename T, typename QUANT_OUT_T, bool IS_OUTPUT, bool IS_BIAS, bool RESIDUAL, bool IS_BETA, bool RETURN_NORMED_OUTPUT, bool USE_DIFF_OF_SQUARES>
void dispatch_layernorm_type_square_method(T* output, T* normed_output, const T* input, const T* bias,
const T* residual, const T* gamma, const T* beta, const float eps, int tokens, int hidden_dim,
const float* scale_orig_quant_per_tensor, float* scale_orig_quant_per_token, QUANT_OUT_T* normed_output_quant,
const dim3 grid, const dim3 block, const size_t shmem_size, cudaStream_t stream)
{
if (shmem_size >= (48 << 10))
{
#if USING_CUDA
cudaError_t ret
= cudaFuncSetAttribute(generalLayerNorm<T, QUANT_OUT_T, IS_OUTPUT, IS_BIAS, RESIDUAL, IS_BETA, RETURN_NORMED_OUTPUT, USE_DIFF_OF_SQUARES>,
cudaFuncAttributeMaxDynamicSharedMemorySize, shmem_size);
#endif
}
generalLayerNorm<T, QUANT_OUT_T, IS_OUTPUT, IS_BIAS, RESIDUAL, IS_BETA, RETURN_NORMED_OUTPUT, USE_DIFF_OF_SQUARES>
<<<grid, block, shmem_size, stream>>>(output, normed_output, input, bias, residual, gamma, beta, eps, tokens,
hidden_dim, scale_orig_quant_per_tensor, scale_orig_quant_per_token, normed_output_quant);
}
template <typename T, typename QUANT_OUT_T, bool IS_OUTPUT, bool IS_BIAS, bool RESIDUAL, bool IS_BETA, bool RETURN_NORMED_OUTPUT>
void dispatch_layernorm_return_normed(T* output, T* normed_output, const T* input, const T* bias, const T* residual,
const T* gamma, const T* beta, const float eps, int tokens, int hidden_dim,
const float* scale_orig_quant_per_tensor, float* scale_orig_quant_per_token, QUANT_OUT_T* normed_output_quant,
const dim3 grid, const dim3 block, const size_t shmem_size, cudaStream_t stream, bool use_diff_of_squares)
{
if (use_diff_of_squares)
{
dispatch_layernorm_type_square_method<T, QUANT_OUT_T, IS_OUTPUT, IS_BIAS, RESIDUAL, IS_BETA, RETURN_NORMED_OUTPUT, true>(output, normed_output,
input, bias, residual, gamma, beta, eps, tokens, hidden_dim, scale_orig_quant_per_tensor,
scale_orig_quant_per_token, normed_output_quant, grid, block, shmem_size, stream);
} else{
dispatch_layernorm_type_square_method<T, QUANT_OUT_T, IS_OUTPUT, IS_BIAS, RESIDUAL, IS_BETA, RETURN_NORMED_OUTPUT, false>(output, normed_output,
input, bias, residual, gamma, beta, eps, tokens, hidden_dim, scale_orig_quant_per_tensor,
scale_orig_quant_per_token, normed_output_quant, grid, block, shmem_size, stream);
}
}
template <typename T, typename QUANT_OUT_T, bool IS_OUTPUT, bool IS_BIAS, bool RESIDUAL, bool IS_BETA>
void dispatch_layernorm_type(T* output, T* normed_output, const T* input, const T* bias, const T* residual,
const T* gamma, const T* beta, const float eps, int tokens, int hidden_dim,
const float* scale_orig_quant_per_tensor, float* scale_orig_quant_per_token, QUANT_OUT_T* normed_output_quant,
const dim3 grid, const dim3 block, const size_t shmem_size, cudaStream_t stream, bool use_diff_of_squares, bool return_normed_output)
{
if (return_normed_output)
{
dispatch_layernorm_return_normed<T, QUANT_OUT_T, IS_OUTPUT, IS_BIAS, RESIDUAL, IS_BETA, true>(output, normed_output,
input, bias, residual, gamma, beta, eps, tokens, hidden_dim, scale_orig_quant_per_tensor,
scale_orig_quant_per_token, normed_output_quant, grid, block, shmem_size, stream, use_diff_of_squares);
}
else
{
dispatch_layernorm_return_normed<T, QUANT_OUT_T, IS_OUTPUT, IS_BIAS, RESIDUAL, IS_BETA, false>(output, normed_output,
input, bias, residual, gamma, beta, eps, tokens, hidden_dim, scale_orig_quant_per_tensor,
scale_orig_quant_per_token, normed_output_quant, grid, block, shmem_size, stream, use_diff_of_squares);
}
}
template <typename T, typename QUANT_OUT_T, bool IS_OUTPUT, bool IS_BIAS, bool RESIUDAL>
void dispatch_layernorm_beta(T* output, T* normed_output, const T* input, const T* bias, const T* residual,
const T* gamma, const T* beta, const float eps, int tokens, int hidden_dim,
const float* scale_orig_quant_per_tensor, float* scale_orig_quant_per_token, QUANT_OUT_T* normed_output_quant,
const dim3 grid, const dim3 block, const size_t shmem_size, cudaStream_t stream, bool use_diff_of_squares, bool return_normed_output)
{
if (beta != nullptr)
{
dispatch_layernorm_type<T, QUANT_OUT_T, IS_OUTPUT, IS_BIAS, RESIUDAL, true>(output, normed_output, input, bias, residual,
gamma, beta, eps, tokens, hidden_dim, scale_orig_quant_per_tensor, scale_orig_quant_per_token,
normed_output_quant, grid, block, shmem_size, stream, use_diff_of_squares, return_normed_output);
}
else
{
dispatch_layernorm_type<T, QUANT_OUT_T, IS_OUTPUT, IS_BIAS, RESIUDAL, false>(output, normed_output, input, bias, residual,
gamma, beta, eps, tokens, hidden_dim, scale_orig_quant_per_tensor, scale_orig_quant_per_token,
normed_output_quant, grid, block, shmem_size, stream, use_diff_of_squares, return_normed_output);
}
}
template <typename T, typename QUANT_OUT_T, bool IS_OUTPUT, bool IS_BIAS>
void dispatch_layernorm_residual(T* output, T* normed_output, const T* input, const T* bias, const T* residual,
const T* gamma, const T* beta, const float eps, int tokens, int hidden_dim,
const float* scale_orig_quant_per_tensor, float* scale_orig_quant_per_token, QUANT_OUT_T* normed_output_quant,
const dim3 grid, const dim3 block, const size_t shmem_size, cudaStream_t stream, bool use_diff_of_squares, bool return_normed_output)
{
if (residual != nullptr)
{
dispatch_layernorm_beta<T, QUANT_OUT_T, IS_OUTPUT, IS_BIAS, true>(output, normed_output, input, bias, residual, gamma, beta,
eps, tokens, hidden_dim, scale_orig_quant_per_tensor, scale_orig_quant_per_token, normed_output_quant, grid,
block, shmem_size, stream, use_diff_of_squares, return_normed_output);
}
else
{
dispatch_layernorm_beta<T, QUANT_OUT_T, IS_OUTPUT, IS_BIAS, false>(output, normed_output, input, bias, residual, gamma, beta,
eps, tokens, hidden_dim, scale_orig_quant_per_tensor, scale_orig_quant_per_token, normed_output_quant, grid,
block, shmem_size, stream, use_diff_of_squares, return_normed_output);
}
}
template <typename T, typename QUANT_OUT_T, bool IS_OUTPUT>
void dispatch_layernorm_bias(T* output, T* normed_output, const T* input, const T* bias, const T* residual,
const T* gamma, const T* beta, const float eps, int tokens, int hidden_dim,
const float* scale_orig_quant_per_tensor, float* scale_orig_quant_per_token, QUANT_OUT_T* normed_output_quant,
const dim3 grid, const dim3 block, const size_t shmem_size, cudaStream_t stream, bool use_diff_of_squares, bool return_normed_output)
{
if (bias != nullptr)
{
dispatch_layernorm_residual<T, QUANT_OUT_T, IS_OUTPUT, true>(output, normed_output, input, bias, residual, gamma, beta, eps,
tokens, hidden_dim, scale_orig_quant_per_tensor, scale_orig_quant_per_token, normed_output_quant, grid,
block, shmem_size, stream, use_diff_of_squares, return_normed_output);
}
else
{
dispatch_layernorm_residual<T, QUANT_OUT_T, IS_OUTPUT, false>(output, normed_output, input, bias, residual, gamma, beta, eps,
tokens, hidden_dim, scale_orig_quant_per_tensor, scale_orig_quant_per_token, normed_output_quant, grid,
block, shmem_size, stream, use_diff_of_squares, return_normed_output);
}
}
template <typename T, typename QUANT_OUT_T>
void dispatch_layernorm_output(T* output, T* normed_output, const T* input, const T* bias, const T* residual,
const T* gamma, const T* beta, const float eps, int tokens, int hidden_dim,
const float* scale_orig_quant_per_tensor, float* scale_orig_quant_per_token, QUANT_OUT_T* normed_output_quant,
const dim3 grid, const dim3 block, const size_t shmem_size, cudaStream_t stream, bool use_diff_of_squares,
bool is_output, bool return_normed_output)
{
if (is_output)
{
dispatch_layernorm_bias<T, QUANT_OUT_T, true>(output, normed_output, input, bias, residual, gamma, beta, eps, tokens,
hidden_dim, scale_orig_quant_per_tensor, scale_orig_quant_per_token, normed_output_quant, grid, block,
shmem_size, stream, use_diff_of_squares, return_normed_output);
}
else
{
dispatch_layernorm_bias<T, QUANT_OUT_T, false>(output, normed_output, input, bias, residual, gamma, beta, eps, tokens,
hidden_dim, scale_orig_quant_per_tensor, scale_orig_quant_per_token, normed_output_quant, grid, block,
shmem_size, stream, use_diff_of_squares, return_normed_output);
}
}
template <typename T, typename QUANT_OUT_T>
void invokeGeneralLayerNorm(T* out, T* normed_output, const T* input, const T* gamma, const T* beta, const float eps, const int tokens,
const int hidden_dim, cudaStream_t stream, bool use_diff_of_squares, const float* scale, float* dynamic_scale,
QUANT_OUT_T* out_quant, bool return_normed_output)
{
#if ENABLE_TRITON && !defined(ENABLE_FP8)
if (hidden_dim <= 4096 && dynamic_scale == nullptr && scale == nullptr
&& beta != nullptr && (out == nullptr || return_normed_output == true)) {
invokeTritonLayerNorm<T, QUANT_OUT_T, false>(out, normed_output, input, (const T*) nullptr, (const T*) nullptr, gamma, beta, eps, tokens, hidden_dim, stream, use_diff_of_squares, scale, dynamic_scale, out_quant, return_normed_output);
return;
}
#endif
dim3 grid(tokens);
dim3 block(min(hidden_dim, 1024));
// Make sure block.x is multiple of 32 for warp shuffle to work
block.x = 32 * ((block.x + 31) / 32);
constexpr size_t vec_size = 2;
const size_t shmem_size = hidden_dim * sizeof(T);
const bool use_vec_type = (hidden_dim % vec_size == 0)
&& (std::is_same<T, half>::value
#ifdef ENABLE_BF16
|| std::is_same<T, __nv_bfloat16>::value
#endif
);
if (use_vec_type)
{
using Tp = typename packed_as<T, vec_size>::type;
dispatch_layernorm_output(reinterpret_cast<Tp*>(out), reinterpret_cast<Tp*>(normed_output),
reinterpret_cast<const Tp*>(input), (const Tp*) nullptr, (const Tp*) nullptr,
reinterpret_cast<const Tp*>(gamma), reinterpret_cast<const Tp*>(beta), eps, tokens, hidden_dim, scale,
dynamic_scale, out_quant, grid, block, shmem_size, stream, use_diff_of_squares, out != nullptr, return_normed_output);
}
else
{
dispatch_layernorm_output(out, normed_output, (const T*) input, (const T*) nullptr, (const T*) nullptr, gamma, beta, eps, tokens,
hidden_dim, scale, dynamic_scale, out_quant, grid, block, shmem_size, stream, use_diff_of_squares, out != nullptr, return_normed_output);
}
}
template <typename T, typename QUANT_OUT_T>
void invokeGeneralAddBiasResidualLayerNorm(T* out, T* norm_output, const T* input, const T* bias, const T* residual,
const T* gamma, const T* beta, const float eps, const int tokens, const int hidden_dim, cudaStream_t stream,
bool use_diff_of_squares, const float* scale, float* dynamic_scale, QUANT_OUT_T* out_quant, bool return_normed_output)
{
#if ENABLE_TRITON && !defined(ENABLE_FP8)
if (hidden_dim <= 4096 && dynamic_scale == nullptr && scale == nullptr
&& beta != nullptr && (out == nullptr || return_normed_output == true)) {
invokeTritonLayerNorm<T, QUANT_OUT_T, true>(out, norm_output, input, bias, residual, gamma, beta, eps, tokens, hidden_dim, stream, use_diff_of_squares, scale, dynamic_scale, out_quant, return_normed_output);
return;
}
#endif
dim3 grid(tokens);
dim3 block(min(hidden_dim, 1024));
// Make sure block.x is multiple of 32 for warp shuffle to work
block.x = 32 * ((block.x + 31) / 32);
constexpr size_t vec_size = 2;
const size_t shmem_size = hidden_dim * sizeof(T);
const bool use_vec_type = (hidden_dim % vec_size == 0)
&& (std::is_same<T, half>::value
#ifdef ENABLE_BF16
|| std::is_same<T, __nv_bfloat16>::value
#endif
);
if (use_vec_type)
{
using Tp = typename packed_as<T, vec_size>::type;
dispatch_layernorm_output(reinterpret_cast<Tp*>(out), reinterpret_cast<Tp*>(norm_output),
reinterpret_cast<const Tp*>(input), reinterpret_cast<const Tp*>(bias),
reinterpret_cast<const Tp*>(residual), reinterpret_cast<const Tp*>(gamma),
reinterpret_cast<const Tp*>(beta), eps, tokens, hidden_dim, scale, dynamic_scale, out_quant, grid, block,
shmem_size, stream, use_diff_of_squares, true, return_normed_output);
}
else
{
dispatch_layernorm_output(out, norm_output, input, bias, residual, gamma, beta, eps, tokens, hidden_dim, scale,
dynamic_scale, out_quant, grid, block, shmem_size, stream, use_diff_of_squares, true, return_normed_output);
}
}
#define INSTANTIATE_GENERAL_LAYERNORM(T, QUANT_OUT_T) \
template void invokeGeneralLayerNorm(T* out, T* normed_output, const T* input, const T* gamma, const T* beta, const float eps, \
const int tokens, const int hidden_dim, cudaStream_t stream, bool use_diff_of_squares, const float* scale, \
float* dynamic_scale, QUANT_OUT_T* out_quant, bool return_normed_output);
INSTANTIATE_GENERAL_LAYERNORM(float, int8_t);
INSTANTIATE_GENERAL_LAYERNORM(half, int8_t);
#ifdef ENABLE_BF16
INSTANTIATE_GENERAL_LAYERNORM(__nv_bfloat16, int8_t);
#endif
#ifdef ENABLE_FP8
INSTANTIATE_GENERAL_LAYERNORM(float, __nv_fp8_e4m3);
INSTANTIATE_GENERAL_LAYERNORM(half, __nv_fp8_e4m3);
#ifdef ENABLE_BF16
INSTANTIATE_GENERAL_LAYERNORM(__nv_bfloat16, __nv_fp8_e4m3);
#endif
#endif
#define INSTANTIATE_GENERAL_ADD_BIAS_RESIDUAL_LAYERNORM(T, QUANT_OUT_T) \
template void invokeGeneralAddBiasResidualLayerNorm(T* out, T* norm_output, const T* input, const T* bias, \
const T* residual, const T* gamma, const T* beta, const float eps, const int tokens, const int hidden_dim, \
cudaStream_t stream, bool use_diff_of_squares, const float* scale, float* dynamic_scale, QUANT_OUT_T* out_quant, bool return_normed_output);
INSTANTIATE_GENERAL_ADD_BIAS_RESIDUAL_LAYERNORM(float, int8_t);
INSTANTIATE_GENERAL_ADD_BIAS_RESIDUAL_LAYERNORM(half, int8_t);
#ifdef ENABLE_BF16
INSTANTIATE_GENERAL_ADD_BIAS_RESIDUAL_LAYERNORM(__nv_bfloat16, int8_t);
#endif
#ifdef ENABLE_FP8
INSTANTIATE_GENERAL_ADD_BIAS_RESIDUAL_LAYERNORM(float, __nv_fp8_e4m3);
INSTANTIATE_GENERAL_ADD_BIAS_RESIDUAL_LAYERNORM(half, __nv_fp8_e4m3);
#ifdef ENABLE_BF16
INSTANTIATE_GENERAL_ADD_BIAS_RESIDUAL_LAYERNORM(__nv_bfloat16, __nv_fp8_e4m3);
#endif
#endif
} // namespace rtp_llm