maga_transformer/models/bloom.py (120 lines of code) (raw):

import functools from typing import Any, Dict from maga_transformer.config.gpt_init_model_parameters import GptInitModelParameters from ..model_loader.attn_weight import AttnAtomicWeight from maga_transformer.utils.util import get_config_from_path from maga_transformer.utils.model_weight import W, CkptWeightInfo, identity, transpose, trans_qkv, trans_qkv_b from maga_transformer.model_loader.model_weight_info import ModelWeightInfo, ModelDeployWeightInfo from maga_transformer.model_loader.weight_module import AtomicWeight from maga_transformer.model_loader.ffn_weight import FfnAtomicWeight from maga_transformer.model_loader.attn_weight import AttnAtomicWeight from maga_transformer.models.base_model import BaseModel from maga_transformer.model_factory_register import register_model class BloomWeightInfo(ModelDeployWeightInfo): def _process_meta(self, meta_dicts, weight_keys): if 'lm_head.weight' in weight_keys: self._lm_head = True else: self._lm_head = False if 'transformer.h.0.input_layernorm.weight' in weight_keys: self._transformer_prefix = True else: self._transformer_prefix = False def _get_weight_info(self): weights = [ AtomicWeight(W.embedding, [CkptWeightInfo('word_embeddings.weight', identity)], identity), AtomicWeight(W.pre_decoder_ln_gamma, [CkptWeightInfo('word_embeddings_layernorm.weight', identity)], identity), AtomicWeight(W.pre_decoder_ln_beta, [CkptWeightInfo('word_embeddings_layernorm.bias', identity)], identity), AtomicWeight(W.final_ln_gamma, [CkptWeightInfo('ln_f.weight', identity)], identity), AtomicWeight(W.final_ln_beta, [CkptWeightInfo('ln_f.bias', identity)], identity), ] attn_config=self.attn_config ffn_config=self.ffn_config layer_weights = [] for _ in range(self._num_layers): layer_weight = [ AtomicWeight(W.pre_ln_beta, [CkptWeightInfo('h.{i}.input_layernorm.bias', identity)], identity), AtomicWeight(W.pre_ln_gamma, [CkptWeightInfo('h.{i}.input_layernorm.weight', identity)], identity), AttnAtomicWeight(W.attn_qkv_w, [CkptWeightInfo('h.{i}.self_attention.query_key_value.weight', identity)], functools.partial(trans_qkv, hidden_size=self._hidden_size, head_num=self._head_num), config=attn_config), AttnAtomicWeight(W.attn_qkv_b, [CkptWeightInfo('h.{i}.self_attention.query_key_value.bias', identity)], functools.partial(trans_qkv_b, hidden_size=self._hidden_size, head_num=self._head_num), config=attn_config), AttnAtomicWeight(W.attn_o_w, [CkptWeightInfo('h.{i}.self_attention.dense.weight', identity)], transpose, config=attn_config), AttnAtomicWeight(W.attn_o_b, [CkptWeightInfo('h.{i}.self_attention.dense.bias', identity)], identity, config=attn_config), FfnAtomicWeight(W.ffn_w3, [CkptWeightInfo('h.{i}.mlp.dense_h_to_4h.weight', identity)], transpose, config=ffn_config), FfnAtomicWeight(W.ffn_b3, [CkptWeightInfo('h.{i}.mlp.dense_h_to_4h.bias', identity)], identity, config=ffn_config), FfnAtomicWeight(W.ffn_w2, [CkptWeightInfo('h.{i}.mlp.dense_4h_to_h.weight', identity)], transpose, config=ffn_config), FfnAtomicWeight(W.ffn_b2, [CkptWeightInfo('h.{i}.mlp.dense_4h_to_h.bias', identity)], identity, config=ffn_config), AtomicWeight(W.post_ln_beta, [CkptWeightInfo('h.{i}.post_attention_layernorm.bias', identity)], identity), AtomicWeight(W.post_ln_gamma, [CkptWeightInfo('h.{i}.post_attention_layernorm.weight', identity)], identity), ] layer_weights.append(layer_weight) if self._transformer_prefix: for w in layer_weights: w.weights[0].name = 'transformer.' + w.weights[0].name for w in weights: w.weights[0].name = 'transformer.' + w.weights[0].name if self._lm_head: weights.append(AtomicWeight(W.lm_head, [CkptWeightInfo('lm_head.weight', identity)], identity)) return ModelWeightInfo(weights, layer_weights) class Bloom(BaseModel): @staticmethod def get_weight_cls(): return BloomWeightInfo @staticmethod def from_huggingface(config_json: Dict[str, Any]): model_type = config_json['model_type'] config = GptInitModelParameters( head_num=32, size_per_head=128, layer_num=30, max_seq_len=2048, vocab_size=250682, ) if model_type != 'bloom': raise BaseException(f'model type is not bloom: {model_type}') config.head_num = config_json.get('num_attention_heads', config_json.get('n_head')) config.head_num_kv = config.head_num config.hidden_size = config_json.get('n_embed', config_json.get('hidden_size')) config.size_per_head = config.hidden_size // config.head_num config.layer_num = config_json['n_layer'] config.max_seq_len = config_json.get('seq_length', 2048) config.vocab_size = config_json['vocab_size'] config.layernorm_eps = config_json['layer_norm_epsilon'] config.inter_size = config.hidden_size * 4 config.special_tokens.eos_token_id = config_json['eos_token_id'] config.tie_word_embeddings = config_json.get('tie_word_embeddings', False) return config @classmethod def _create_config(cls, ckpt_path: str): config_dict = get_config_from_path(ckpt_path) if config_dict: config = Bloom.from_huggingface(config_dict) else: config = GptInitModelParameters( head_num=32, head_num_kv=32, size_per_head=128, inter_size=4 * 32 * 128, layer_num=30, max_seq_len=2048, vocab_size=250880) config.layernorm_eps=1e-5 config.layernorm_type = 'pre_layernorm' config.activation_type = 'gelu' config.has_positional_encoding=False config.has_pre_decoder_layernorm=True config.has_post_decoder_layernorm=True config.use_attention_linear_bias=True return config register_model('bloom', Bloom, ["BloomForCausalLM"])