maga_transformer/models/bloom.py (120 lines of code) (raw):
import functools
from typing import Any, Dict
from maga_transformer.config.gpt_init_model_parameters import GptInitModelParameters
from ..model_loader.attn_weight import AttnAtomicWeight
from maga_transformer.utils.util import get_config_from_path
from maga_transformer.utils.model_weight import W, CkptWeightInfo, identity, transpose, trans_qkv, trans_qkv_b
from maga_transformer.model_loader.model_weight_info import ModelWeightInfo, ModelDeployWeightInfo
from maga_transformer.model_loader.weight_module import AtomicWeight
from maga_transformer.model_loader.ffn_weight import FfnAtomicWeight
from maga_transformer.model_loader.attn_weight import AttnAtomicWeight
from maga_transformer.models.base_model import BaseModel
from maga_transformer.model_factory_register import register_model
class BloomWeightInfo(ModelDeployWeightInfo):
def _process_meta(self, meta_dicts, weight_keys):
if 'lm_head.weight' in weight_keys:
self._lm_head = True
else:
self._lm_head = False
if 'transformer.h.0.input_layernorm.weight' in weight_keys:
self._transformer_prefix = True
else:
self._transformer_prefix = False
def _get_weight_info(self):
weights = [
AtomicWeight(W.embedding, [CkptWeightInfo('word_embeddings.weight', identity)], identity),
AtomicWeight(W.pre_decoder_ln_gamma, [CkptWeightInfo('word_embeddings_layernorm.weight', identity)], identity),
AtomicWeight(W.pre_decoder_ln_beta, [CkptWeightInfo('word_embeddings_layernorm.bias', identity)], identity),
AtomicWeight(W.final_ln_gamma, [CkptWeightInfo('ln_f.weight', identity)], identity),
AtomicWeight(W.final_ln_beta, [CkptWeightInfo('ln_f.bias', identity)], identity),
]
attn_config=self.attn_config
ffn_config=self.ffn_config
layer_weights = []
for _ in range(self._num_layers):
layer_weight = [
AtomicWeight(W.pre_ln_beta, [CkptWeightInfo('h.{i}.input_layernorm.bias', identity)],
identity),
AtomicWeight(W.pre_ln_gamma, [CkptWeightInfo('h.{i}.input_layernorm.weight', identity)],
identity),
AttnAtomicWeight(W.attn_qkv_w, [CkptWeightInfo('h.{i}.self_attention.query_key_value.weight', identity)],
functools.partial(trans_qkv, hidden_size=self._hidden_size, head_num=self._head_num), config=attn_config),
AttnAtomicWeight(W.attn_qkv_b, [CkptWeightInfo('h.{i}.self_attention.query_key_value.bias', identity)],
functools.partial(trans_qkv_b, hidden_size=self._hidden_size, head_num=self._head_num), config=attn_config),
AttnAtomicWeight(W.attn_o_w, [CkptWeightInfo('h.{i}.self_attention.dense.weight', identity)],
transpose, config=attn_config),
AttnAtomicWeight(W.attn_o_b, [CkptWeightInfo('h.{i}.self_attention.dense.bias', identity)],
identity, config=attn_config),
FfnAtomicWeight(W.ffn_w3, [CkptWeightInfo('h.{i}.mlp.dense_h_to_4h.weight', identity)],
transpose, config=ffn_config),
FfnAtomicWeight(W.ffn_b3, [CkptWeightInfo('h.{i}.mlp.dense_h_to_4h.bias', identity)],
identity, config=ffn_config),
FfnAtomicWeight(W.ffn_w2, [CkptWeightInfo('h.{i}.mlp.dense_4h_to_h.weight', identity)],
transpose, config=ffn_config),
FfnAtomicWeight(W.ffn_b2, [CkptWeightInfo('h.{i}.mlp.dense_4h_to_h.bias', identity)],
identity, config=ffn_config),
AtomicWeight(W.post_ln_beta, [CkptWeightInfo('h.{i}.post_attention_layernorm.bias', identity)],
identity),
AtomicWeight(W.post_ln_gamma, [CkptWeightInfo('h.{i}.post_attention_layernorm.weight', identity)],
identity),
]
layer_weights.append(layer_weight)
if self._transformer_prefix:
for w in layer_weights:
w.weights[0].name = 'transformer.' + w.weights[0].name
for w in weights:
w.weights[0].name = 'transformer.' + w.weights[0].name
if self._lm_head:
weights.append(AtomicWeight(W.lm_head, [CkptWeightInfo('lm_head.weight', identity)], identity))
return ModelWeightInfo(weights, layer_weights)
class Bloom(BaseModel):
@staticmethod
def get_weight_cls():
return BloomWeightInfo
@staticmethod
def from_huggingface(config_json: Dict[str, Any]):
model_type = config_json['model_type']
config = GptInitModelParameters(
head_num=32,
size_per_head=128,
layer_num=30,
max_seq_len=2048,
vocab_size=250682,
)
if model_type != 'bloom':
raise BaseException(f'model type is not bloom: {model_type}')
config.head_num = config_json.get('num_attention_heads', config_json.get('n_head'))
config.head_num_kv = config.head_num
config.hidden_size = config_json.get('n_embed', config_json.get('hidden_size'))
config.size_per_head = config.hidden_size // config.head_num
config.layer_num = config_json['n_layer']
config.max_seq_len = config_json.get('seq_length', 2048)
config.vocab_size = config_json['vocab_size']
config.layernorm_eps = config_json['layer_norm_epsilon']
config.inter_size = config.hidden_size * 4
config.special_tokens.eos_token_id = config_json['eos_token_id']
config.tie_word_embeddings = config_json.get('tie_word_embeddings', False)
return config
@classmethod
def _create_config(cls, ckpt_path: str):
config_dict = get_config_from_path(ckpt_path)
if config_dict:
config = Bloom.from_huggingface(config_dict)
else:
config = GptInitModelParameters(
head_num=32,
head_num_kv=32,
size_per_head=128,
inter_size=4 * 32 * 128,
layer_num=30,
max_seq_len=2048,
vocab_size=250880)
config.layernorm_eps=1e-5
config.layernorm_type = 'pre_layernorm'
config.activation_type = 'gelu'
config.has_positional_encoding=False
config.has_pre_decoder_layernorm=True
config.has_post_decoder_layernorm=True
config.use_attention_linear_bias=True
return config
register_model('bloom', Bloom, ["BloomForCausalLM"])