maga_transformer/models/gpt_neox_weight.py (106 lines of code) (raw):

import functools from maga_transformer.utils.model_weight import W, CkptWeightInfo,\ identity, zeros, transpose, trans_qkv, trans_qkv_b from maga_transformer.model_loader.model_weight_info import ModelWeightInfo, ModelDeployWeightInfo from maga_transformer.model_loader.weight_module import WeightModule, AtomicWeight from maga_transformer.model_loader.ffn_weight import FfnAtomicWeight, FfnWeight, FfnConfig from maga_transformer.model_loader.attn_weight import AttnAtomicWeight, AttnConfig class GPTNeoxWeight(ModelDeployWeightInfo): def __init__(self, config, tp_size, tp_rank): super().__init__(config, tp_size, tp_rank) self.norm = config.norm_type def _get_weight_info(self): weights = [ AtomicWeight(W.embedding, [CkptWeightInfo('gpt_neox.embed_in.weight', identity)], identity), AtomicWeight(W.lm_head, [CkptWeightInfo('embed_out.weight', identity)], identity) ] attn_config: AttnConfig = self.attn_config ffn_config: FfnConfig = self.ffn_config layer_weights = [] for _ in range(self._num_layers): layer_weight = [ AttnAtomicWeight(W.attn_qkv_w, [CkptWeightInfo('gpt_neox.layers.{i}.attention.query_key_value.weight', identity)], functools.partial(trans_qkv, hidden_size=self._hidden_size, head_num=self._head_num), config=attn_config), AttnAtomicWeight(W.attn_qkv_b, [CkptWeightInfo('gpt_neox.layers.{i}.attention.query_key_value.bias', identity)], functools.partial(trans_qkv_b, hidden_size=self._hidden_size, head_num=self._head_num), config=attn_config), AttnAtomicWeight(W.attn_o_w, [CkptWeightInfo('gpt_neox.layers.{i}.attention.dense.weight', identity)], transpose, config=attn_config), AttnAtomicWeight(W.attn_o_b, [CkptWeightInfo('gpt_neox.layers.{i}.attention.dense.bias', identity)], identity, config=attn_config), FfnWeight(sub_weights=[ FfnAtomicWeight(W.ffn_w3, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_h_to_4h.weight', identity)], transpose, config=ffn_config), FfnAtomicWeight(W.ffn_b3, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_h_to_4h.bias', identity)], identity, config=ffn_config), FfnAtomicWeight(W.ffn_w2, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_4h_to_h.weight', identity)], transpose, config=ffn_config), FfnAtomicWeight(W.ffn_b2, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_4h_to_h.bias', identity)], identity, config=ffn_config)], config=ffn_config) ] # default use parallel residual: x = x + attn(ln1(x)) + mlp(ln2(x)) if self.norm == 'rmsnorm': weights.extend([ AtomicWeight(W.final_ln_gamma, [CkptWeightInfo('gpt_neox.final_layer_norm.scale', identity)], identity), AtomicWeight(W.final_ln_beta, [], functools.partial(zeros, shape=[self._hidden_size])) ]) layer_weights.extend([ AtomicWeight(W.pre_attn_ln_gamma, [CkptWeightInfo('gpt_neox.layers.{i}.input_layernorm.scale', identity)], identity), AtomicWeight(W.pre_ln_gamma, [CkptWeightInfo('gpt_neox.layers.{i}.post_attention_layernorm.scale', identity)], identity) ]) elif self.norm == 'layernorm': weights.extend([ AtomicWeight(W.final_ln_gamma, [CkptWeightInfo('gpt_neox.final_layer_norm.weight', identity)], identity), AtomicWeight(W.final_ln_beta, [CkptWeightInfo('gpt_neox.final_layer_norm.bias', identity)], identity) ]) layer_weights.extend([ AtomicWeight(W.pre_attn_ln_gamma, [CkptWeightInfo('gpt_neox.layers.{i}.input_layernorm.weight', identity)], identity), AtomicWeight(W.pre_attn_ln_beta, [CkptWeightInfo('gpt_neox.layers.{i}.input_layernorm.bias', identity)], identity), AtomicWeight(W.pre_ln_gamma, [CkptWeightInfo('gpt_neox.layers.{i}.post_attention_layernorm.weight', identity)], identity), AtomicWeight(W.pre_ln_beta, [CkptWeightInfo('gpt_neox.layers.{i}.post_attention_layernorm.bias', identity)], identity) ]) layer_weights.append(layer_weight) return ModelWeightInfo(layer_weights=layer_weights, weights=weights) class GPTNeox13BWeight(ModelDeployWeightInfo): def _get_weight_info(self): weights = [ AtomicWeight(W.embedding, [CkptWeightInfo('gpt_neox.embed_in.weight', identity)], identity), AtomicWeight(W.lm_head, [CkptWeightInfo('embed_out.weight', identity)], identity), AtomicWeight(W.final_ln_gamma, [CkptWeightInfo('gpt_neox.final_layer_norm.scale', identity)], identity), AtomicWeight(W.final_ln_beta, [], functools.partial(zeros, shape=[self._hidden_size])), ] attn_config: AttnConfig = self.attn_config ffn_config: FfnConfig = self.ffn_config layer_weights = [] for _ in range(self._num_layers): layer_weight= [ AtomicWeight(W.pre_ln_gamma, [CkptWeightInfo('gpt_neox.layers.{i}.input_layernorm.scale', identity)], identity), AttnAtomicWeight(W.attn_qkv_w, [CkptWeightInfo('gpt_neox.layers.{i}.attention.query_key_value.weight', identity)], functools.partial(trans_qkv, hidden_size=self._hidden_size, head_num=self._head_num), config=attn_config), AttnAtomicWeight(W.attn_qkv_b, [CkptWeightInfo('gpt_neox.layers.{i}.attention.query_key_value.bias', identity)], functools.partial(trans_qkv_b, hidden_size=self._hidden_size, head_num=self._head_num), config=attn_config), AttnAtomicWeight(W.attn_o_w, [CkptWeightInfo('gpt_neox.layers.{i}.attention.dense.weight', identity)], transpose, config=attn_config), AttnAtomicWeight(W.attn_o_b, [CkptWeightInfo('gpt_neox.layers.{i}.attention.dense.bias', identity)], identity, config=attn_config), FfnWeight(sub_weights=[ FfnAtomicWeight(W.ffn_w3, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_h_to_4h.weight', identity)], transpose, config=ffn_config), FfnAtomicWeight(W.ffn_b3, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_h_to_4h.bias', identity)], identity, config=ffn_config), FfnAtomicWeight(W.ffn_w2, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_4h_to_h.weight', identity)], transpose, config=ffn_config), FfnAtomicWeight(W.ffn_b2, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_4h_to_h.bias', identity)], identity, config=ffn_config) ], config=ffn_config), AtomicWeight(W.post_ln_gamma, [CkptWeightInfo('gpt_neox.layers.{i}.post_attention_layernorm.scale', identity)], identity), ] layer_weights.append(layer_weight) return ModelWeightInfo(layer_weights=layer_weights, weights=weights)