maga_transformer/models/gpt_neox_weight.py (106 lines of code) (raw):
import functools
from maga_transformer.utils.model_weight import W, CkptWeightInfo,\
identity, zeros, transpose, trans_qkv, trans_qkv_b
from maga_transformer.model_loader.model_weight_info import ModelWeightInfo, ModelDeployWeightInfo
from maga_transformer.model_loader.weight_module import WeightModule, AtomicWeight
from maga_transformer.model_loader.ffn_weight import FfnAtomicWeight, FfnWeight, FfnConfig
from maga_transformer.model_loader.attn_weight import AttnAtomicWeight, AttnConfig
class GPTNeoxWeight(ModelDeployWeightInfo):
def __init__(self, config, tp_size, tp_rank):
super().__init__(config, tp_size, tp_rank)
self.norm = config.norm_type
def _get_weight_info(self):
weights = [
AtomicWeight(W.embedding, [CkptWeightInfo('gpt_neox.embed_in.weight', identity)], identity),
AtomicWeight(W.lm_head, [CkptWeightInfo('embed_out.weight', identity)], identity)
]
attn_config: AttnConfig = self.attn_config
ffn_config: FfnConfig = self.ffn_config
layer_weights = []
for _ in range(self._num_layers):
layer_weight = [
AttnAtomicWeight(W.attn_qkv_w, [CkptWeightInfo('gpt_neox.layers.{i}.attention.query_key_value.weight', identity)],
functools.partial(trans_qkv, hidden_size=self._hidden_size, head_num=self._head_num), config=attn_config),
AttnAtomicWeight(W.attn_qkv_b, [CkptWeightInfo('gpt_neox.layers.{i}.attention.query_key_value.bias', identity)],
functools.partial(trans_qkv_b, hidden_size=self._hidden_size, head_num=self._head_num), config=attn_config),
AttnAtomicWeight(W.attn_o_w, [CkptWeightInfo('gpt_neox.layers.{i}.attention.dense.weight', identity)],
transpose, config=attn_config),
AttnAtomicWeight(W.attn_o_b, [CkptWeightInfo('gpt_neox.layers.{i}.attention.dense.bias', identity)],
identity, config=attn_config),
FfnWeight(sub_weights=[
FfnAtomicWeight(W.ffn_w3, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_h_to_4h.weight', identity)],
transpose, config=ffn_config),
FfnAtomicWeight(W.ffn_b3, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_h_to_4h.bias', identity)],
identity, config=ffn_config),
FfnAtomicWeight(W.ffn_w2, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_4h_to_h.weight', identity)],
transpose, config=ffn_config),
FfnAtomicWeight(W.ffn_b2, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_4h_to_h.bias', identity)],
identity, config=ffn_config)],
config=ffn_config)
]
# default use parallel residual: x = x + attn(ln1(x)) + mlp(ln2(x))
if self.norm == 'rmsnorm':
weights.extend([
AtomicWeight(W.final_ln_gamma, [CkptWeightInfo('gpt_neox.final_layer_norm.scale', identity)], identity),
AtomicWeight(W.final_ln_beta, [], functools.partial(zeros, shape=[self._hidden_size]))
])
layer_weights.extend([
AtomicWeight(W.pre_attn_ln_gamma, [CkptWeightInfo('gpt_neox.layers.{i}.input_layernorm.scale', identity)],
identity),
AtomicWeight(W.pre_ln_gamma, [CkptWeightInfo('gpt_neox.layers.{i}.post_attention_layernorm.scale', identity)],
identity)
])
elif self.norm == 'layernorm':
weights.extend([
AtomicWeight(W.final_ln_gamma, [CkptWeightInfo('gpt_neox.final_layer_norm.weight', identity)], identity),
AtomicWeight(W.final_ln_beta, [CkptWeightInfo('gpt_neox.final_layer_norm.bias', identity)], identity)
])
layer_weights.extend([
AtomicWeight(W.pre_attn_ln_gamma, [CkptWeightInfo('gpt_neox.layers.{i}.input_layernorm.weight', identity)],
identity),
AtomicWeight(W.pre_attn_ln_beta, [CkptWeightInfo('gpt_neox.layers.{i}.input_layernorm.bias', identity)],
identity),
AtomicWeight(W.pre_ln_gamma, [CkptWeightInfo('gpt_neox.layers.{i}.post_attention_layernorm.weight', identity)],
identity),
AtomicWeight(W.pre_ln_beta, [CkptWeightInfo('gpt_neox.layers.{i}.post_attention_layernorm.bias', identity)],
identity)
])
layer_weights.append(layer_weight)
return ModelWeightInfo(layer_weights=layer_weights, weights=weights)
class GPTNeox13BWeight(ModelDeployWeightInfo):
def _get_weight_info(self):
weights = [
AtomicWeight(W.embedding, [CkptWeightInfo('gpt_neox.embed_in.weight', identity)], identity),
AtomicWeight(W.lm_head, [CkptWeightInfo('embed_out.weight', identity)], identity),
AtomicWeight(W.final_ln_gamma, [CkptWeightInfo('gpt_neox.final_layer_norm.scale', identity)], identity),
AtomicWeight(W.final_ln_beta, [], functools.partial(zeros, shape=[self._hidden_size])),
]
attn_config: AttnConfig = self.attn_config
ffn_config: FfnConfig = self.ffn_config
layer_weights = []
for _ in range(self._num_layers):
layer_weight= [
AtomicWeight(W.pre_ln_gamma, [CkptWeightInfo('gpt_neox.layers.{i}.input_layernorm.scale', identity)],
identity),
AttnAtomicWeight(W.attn_qkv_w, [CkptWeightInfo('gpt_neox.layers.{i}.attention.query_key_value.weight', identity)],
functools.partial(trans_qkv, hidden_size=self._hidden_size, head_num=self._head_num), config=attn_config),
AttnAtomicWeight(W.attn_qkv_b, [CkptWeightInfo('gpt_neox.layers.{i}.attention.query_key_value.bias', identity)],
functools.partial(trans_qkv_b, hidden_size=self._hidden_size, head_num=self._head_num), config=attn_config),
AttnAtomicWeight(W.attn_o_w, [CkptWeightInfo('gpt_neox.layers.{i}.attention.dense.weight', identity)],
transpose, config=attn_config),
AttnAtomicWeight(W.attn_o_b, [CkptWeightInfo('gpt_neox.layers.{i}.attention.dense.bias', identity)],
identity, config=attn_config),
FfnWeight(sub_weights=[
FfnAtomicWeight(W.ffn_w3, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_h_to_4h.weight', identity)],
transpose, config=ffn_config),
FfnAtomicWeight(W.ffn_b3, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_h_to_4h.bias', identity)],
identity, config=ffn_config),
FfnAtomicWeight(W.ffn_w2, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_4h_to_h.weight', identity)],
transpose, config=ffn_config),
FfnAtomicWeight(W.ffn_b2, [CkptWeightInfo('gpt_neox.layers.{i}.mlp.dense_4h_to_h.bias', identity)],
identity, config=ffn_config)
], config=ffn_config),
AtomicWeight(W.post_ln_gamma, [CkptWeightInfo('gpt_neox.layers.{i}.post_attention_layernorm.scale', identity)],
identity),
]
layer_weights.append(layer_weight)
return ModelWeightInfo(layer_weights=layer_weights, weights=weights)