maga_transformer/models/qwen.py (209 lines of code) (raw):

import functools import os import json from typing import List from maga_transformer.utils.model_weight import W, CkptWeightInfo, \ identity, sp_0, sp_head_lora, sp_id, sp_neg1, zeros, transpose, transpose_pad from maga_transformer.config.gpt_init_model_parameters import GptInitModelParameters from maga_transformer.models.base_model import BaseModel from maga_transformer.tokenizer.tokenization_qwen import QWenTokenizer as QwenTokenizerOrigin from maga_transformer.model_factory_register import register_model from maga_transformer.model_loader.weight_module import WeightModule, AtomicWeight from maga_transformer.model_loader.ffn_weight import FfnAtomicWeight, FfnWeight, FfnConfig from maga_transformer.model_loader.attn_weight import AttnAtomicWeight, AttnConfig from maga_transformer.model_loader.model_weight_info import ModelWeightInfo, ModelDeployWeightInfo def hidden_to_inter(hidden_size): ffn_m = 256 return int((int(4 * 2 / 3 * hidden_size) * 2 + ffn_m - 1) // ffn_m * ffn_m / 2) def qkv_transpose(ts, hidden_size): return ts[0].reshape(hidden_size, -1) class QWenTokenizer(QwenTokenizerOrigin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.decoder.update({v: k for k, v in self.special_tokens.items()}) class QWenWeight(ModelDeployWeightInfo): @property def support_lora(self): return True def _get_layer_id_info(self, ckpt_meta): try: layers = [int(name.split('.')[1]) for name in ckpt_meta['model']['language_model']['encoder'].keys() if "layers.0.self_attention.query_key_value.weight" in name] return layers[0], layers[-1] except Exception as _: # 'transformer.h.{i}.attn.c_attn.weight' layers = [int(name.split('.')[2]) for name in ckpt_meta.keys() if ".attn.c_attn.weight" in name] return layers[0], layers[-1] def _get_weight_info(self): return self._get_hf_weight_info() def _get_hf_layer_weight_info(self, layer_id): inter_padding_size = self._layer_inter_padding_size[layer_id] if self._layer_inter_padding_size else self._inter_padding_size attn_config = AttnConfig( hidden_size=self._hidden_size, size_per_head=self._size_per_head, head_num=self._head_num, head_num_kv=self._head_num_kv) ffn_config = FfnConfig( is_gated_activation=self._is_gated_activation, inter_padding_size=inter_padding_size, is_moe=False ) layer_weights = [ AtomicWeight(W.pre_ln_gamma, [CkptWeightInfo('transformer.h.{i}.ln_1.weight', identity)], identity), AttnAtomicWeight(W.attn_qkv_w, [CkptWeightInfo('transformer.h.{i}.attn.c_attn.weight', identity)], transpose, config=attn_config, lora_a_process_func=transpose, lora_b_process_func=transpose, lora_a_split_func=sp_id, lora_b_split_func=sp_head_lora), AttnAtomicWeight(W.attn_qkv_b, [CkptWeightInfo('transformer.h.{i}.attn.c_attn.bias', identity)], identity, config=attn_config), AttnAtomicWeight(W.attn_o_w, [CkptWeightInfo('transformer.h.{i}.attn.c_proj.weight', identity)], transpose, config=attn_config, lora_a_process_func=transpose, lora_b_process_func=transpose, lora_a_split_func=sp_0, lora_b_split_func=sp_id), FfnWeight(sub_weights = [ FfnAtomicWeight(W.ffn_w1, [CkptWeightInfo('transformer.h.{i}.mlp.w2.weight', identity)], functools.partial(transpose_pad, inter_padding_size=inter_padding_size, dim=0), config=ffn_config, lora_a_process_func=transpose, lora_b_process_func=functools.partial(transpose_pad, inter_padding_size=inter_padding_size, dim=0), lora_a_split_func=sp_id, lora_b_split_func=sp_neg1), FfnAtomicWeight(W.ffn_w3, [CkptWeightInfo('transformer.h.{i}.mlp.w1.weight', identity)], functools.partial(transpose_pad, inter_padding_size=inter_padding_size, dim=0), config=ffn_config, lora_a_process_func=transpose, lora_b_process_func=functools.partial(transpose_pad, inter_padding_size=inter_padding_size, dim=0), lora_a_split_func=sp_id, lora_b_split_func=sp_neg1), FfnAtomicWeight(W.ffn_w2, [CkptWeightInfo('transformer.h.{i}.mlp.c_proj.weight', identity)], functools.partial(transpose_pad, inter_padding_size=inter_padding_size, dim=1), config=ffn_config, lora_a_process_func=functools.partial(transpose_pad, inter_padding_size=inter_padding_size, dim=0), lora_b_process_func=transpose, lora_a_split_func=sp_0, lora_b_split_func=sp_id) ], config=ffn_config), AtomicWeight(W.post_ln_gamma, [CkptWeightInfo('transformer.h.{i}.ln_2.weight', identity)], identity), ] return layer_weights def _get_hf_weight_info(self): weights = [ AtomicWeight(W.embedding, [CkptWeightInfo('transformer.wte.weight', identity)], identity), AtomicWeight(W.lm_head, [CkptWeightInfo('lm_head.weight', identity)], identity), AtomicWeight(W.final_ln_gamma, [CkptWeightInfo('transformer.ln_f.weight', identity)], identity), AtomicWeight(W.final_ln_beta, [], functools.partial(zeros, shape=[self._hidden_size])), ] layer_weights: List[List[WeightModule]] = [] for layer in range(self._num_layers): w = self._get_hf_layer_weight_info(layer) layer_weights.append(w) return ModelWeightInfo(layer_weights=layer_weights, weights=weights) class QWenBase(BaseModel): @staticmethod def get_weight_cls(): return QWenWeight @staticmethod def _common_config(config, ckpt_path: str) -> GptInitModelParameters: config.rotary_embedding_dim = 128 config.rotary_embedding_style = 1 config.activation_type = 'SiGLU' config.has_pre_decoder_layernorm = False config.has_post_decoder_layernorm = True config.norm_type = 'rmsnorm' config.layernorm_eps = 1e-5 config.special_tokens.bos_token_id = -1 config.special_tokens.eos_token_id = 151643 # <|im_start|> and <|im_end|> config.special_tokens.stop_words_id_list = [[151645], [151644]] config.special_tokens.system.token_ids = [151644, 8948, 198] # '<|im_start|>system\n' config.special_tokens.system.eos_token_ids = [151645, 198] # '<|im_end|>\n' config.special_tokens.user.token_ids = [151644, 872, 198] # '<|im_start|>user\n' config.special_tokens.user.eos_token_ids = [151645, 198] # '<|im_end|>\n' config.special_tokens.assistant.token_ids = [151644, 77091, 198] # '<|im_start|>assistant\n' config.special_tokens.assistant.eos_token_ids = [151645, 198] # '<|im_end|>\n' QWen._from_hf(config, ckpt_path) return config @staticmethod def _from_hf(config: GptInitModelParameters, ckpt_path: str): config_path = os.path.join(ckpt_path, "config.json") if not os.path.exists(config_path): return with open(config_path) as reader: content = reader.read() config_json = json.loads(content) config.head_num = config_json.get("n_head", config_json.get("num_attention_heads", config.head_num)) # 如果2者不一致就是 attention sparse场景,headnum不能用attention的heads config.head_num_kv = config.head_num config.size_per_head = config_json.get("kv_channels", config.size_per_head) config.hidden_size = config_json.get("hidden_size", config.hidden_size) config.inter_size = int( config_json.get("intermediate_size", config_json.get("ffn_hidden_size", hidden_to_inter(config.head_num * config.size_per_head) * 2)) / 2 ) config.layernorm_eps = config_json.get("layer_norm_epsilon", config.layernorm_eps) config.layer_num = config_json.get("num_hidden_layers", config_json.get("n_layer", config.layer_num)) config.vocab_size = config_json.get("vocab_size", config_json.get("padded_vocab_size", config.vocab_size)) config.rotary_embedding_base = config_json.get('rotary_emb_base', 10000) config.rotary_embedding_dim = config.size_per_head config.special_tokens.eos_token_id = config_json.get("eos_token_id", config.special_tokens.eos_token_id) config.tie_word_embeddings = config_json.get('tie_word_embeddings', False) if config_json.get("use_dynamic_ntk"): config.rotary_embedding_style = 4 config.org_embedding_max_pos = config_json.get("seq_length", 8192) config.use_logn_attn = config_json.get("use_logn_attn") @classmethod def get_tokenizer(cls, config: GptInitModelParameters): return QWenTokenizer.from_pretrained(config.tokenizer_path) class QWen(QWenBase): @classmethod def _create_config(cls, ckpt_path: str): config = GptInitModelParameters( head_num=0, head_num_kv=0, size_per_head=0, layer_num=0, inter_size=0, # 13696 vocab_size=152064, max_seq_len=8192) QWenBase._common_config(config, ckpt_path) assert config.head_num > 0 and config.head_num_kv > 0 and config.size_per_head > 0 and config.layer_num > 0 and config.inter_size > 0, "error config" return config class QWen_7B(QWenBase): @classmethod def _create_config(cls, ckpt_path: str): config = GptInitModelParameters( head_num=32, head_num_kv=32, size_per_head=128, layer_num=32, inter_size=hidden_to_inter(4096), # 11008 vocab_size=151936, max_seq_len=8192) QWenBase._common_config(config, ckpt_path) return config class QWen_13B(QWenBase): @classmethod def _create_config(cls, ckpt_path: str): config = GptInitModelParameters( head_num=40, head_num_kv=40, size_per_head=128, layer_num=40, inter_size=hidden_to_inter(5120), # 13696 vocab_size=152064, max_seq_len=8192) QWen._common_config(config, ckpt_path) return config class QWen_1B8(QWenBase): @classmethod def _create_config(cls, ckpt_path: str): config = GptInitModelParameters( head_num=16, head_num_kv=16, size_per_head=128, layer_num=24, inter_size=hidden_to_inter(2048), # 5504 vocab_size=151936, max_seq_len=2048) QWenBase._common_config(config, ckpt_path) return config register_model('qwen', QWen, ["QWenLMHeadModel"]) register_model('qwen_7b', QWen_7B) register_model('qwen_13b', QWen_13B) register_model('qwen_1b8', QWen_1B8)