maga_transformer/utils/smooth_quant_convert/llama/convert.py (191 lines of code) (raw):
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities for exporting a model to our custom format.
"""
import numpy as np
import torch
def save_val(val, dir, key, tp_num=None):
dir[f"model.{key}"] = torch.from_numpy(np.asarray(val))
def save_split(split_vals, dir, key, i, factor):
for j, val in enumerate(split_vals):
save_val(val, dir, key, i * factor + j)
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=False):
"""
This function has two purposes:
- compute quantized weights, scaled either per-tensor or per-column
- compute scaling factors
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
Here is the list of what we need (T means per-tensor, C per-column):
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
# - scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
# - scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
# to quant range (int8) (used for CUBLAS) (T, C)
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
but then the model would change depending on the number of GPUs used.
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
"""
# compute weight scaling factors for fp->int8 and int8->fp
if is_qkv and not multi_query_mode:
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
dim=-1, keepdims=True)[0].cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].reshape(3,
-1).cpu().numpy()
elif is_qkv and multi_query_mode:
hidden_dim = weights.shape[0]
local_dim = act_range["w"].shape[0]
kv_dim = (local_dim - hidden_dim) // 2
scale_w_q = act_range["w"][0:hidden_dim]
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
scale_w_v = act_range["w"][-kv_dim:]
scale_w_qkv_t = torch.concat([
scale_w_q.max(dim=0, keepdim=True)[0],
scale_w_k.max(dim=0, keepdim=True)[0],
scale_w_v.max(dim=0, keepdim=True)[0]
])
scale_w_orig_quant_t = 127. / scale_w_qkv_t.cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
else:
scale_w_orig_quant_t = 127. / act_range["w"].max().cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
# compute the rest of needed scaling factors
scale_x_orig_quant_t = np.array(127. / act_range["x"].max().item())
scale_y_orig_quant_t = np.array(127. / act_range["y"].max().item())
scale_y_quant_orig_t = np.array(act_range["y"].max().item() / 127.)
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_t)
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_c)
if is_qkv and not multi_query_mode:
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
scale_w_orig_quant_c.shape)
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
scale_w_orig_quant_c.shape)
if is_qkv and multi_query_mode:
scale_q_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[0],
scale_w_q.shape)
scale_k_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[1],
scale_w_k.shape)
scale_v_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[2],
scale_w_v.shape)
scale_y_accum_quant_t = np.concatenate(
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
scale_w_quant_orig_t = np.concatenate([
np.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
np.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
np.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
])
to_i8 = lambda x: x.round().clip(-127, 127).astype(np.int8)
if is_qkv and multi_query_mode:
scale_w_quant_orig_t_expand = np.ones([weights.shape[-1]])
scale_w_quant_orig_t_expand[:hidden_dim] = scale_w_quant_orig_t[0]
scale_w_quant_orig_t_expand[hidden_dim:hidden_dim +
kv_dim] = scale_w_quant_orig_t[1]
scale_w_quant_orig_t_expand[-kv_dim:] = scale_w_quant_orig_t[2]
weight_int8 = to_i8(weights * scale_w_quant_orig_t_expand)
else:
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
return {
"weight.int8": weight_int8,
"weight.int8.col": to_i8(weights * scale_w_orig_quant_c),
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
}
def save_multi_query_mode_qkv_int8(val, dir, base_key, saved_key, factor, rank,
local_dim, head_size):
q, k, v = np.split(val, [local_dim, local_dim + head_size], axis=-1)
q_split = np.split(q, factor, axis=-1)
k_split = np.split(k, factor, axis=-1)
v_split = np.split(v, factor, axis=-1)
split_vals = [
np.concatenate((q_split[ii], k_split[ii], v_split[ii]), axis=-1)
for ii in range(factor)
]
save_split(split_vals, dir, f"{base_key}.{saved_key}", rank, factor)
def write_int8(vals,
dir,
base_key,
split_dim,
i,
factor,
is_qkv=False,
multi_query_mode=False):
saved_keys_once = [
"scale_x_orig_quant", "scale_w_quant_orig"
]
# saved_keys_once = [
# "scale_x_orig_quant", "scale_w_quant_orig", "scale_y_accum_quant",
# "scale_y_quant_orig"
# ]
# if is_qkv and multi_query_mode:
# assert split_dim == -1
# local_dim = vals["weight.int8"].shape[0]
# head_size = (vals["weight.int8"].shape[1] - local_dim) // 2
# # save_multi_query_mode_qkv_int8(vals["weight.int8"], dir, base_key,
# # "weight.int8", factor, i, local_dim,
# # head_size)
# save_multi_query_mode_qkv_int8(vals["weight.int8.col"], dir, base_key,
# "weight.int8.col", factor, i, local_dim,
# head_size)
# save_multi_query_mode_qkv_int8(vals["scale_w_quant_orig.col"], dir,
# base_key, "scale_w_quant_orig.col",
# factor, i, local_dim, head_size)
# # save_multi_query_mode_qkv_int8(vals["scale_y_accum_quant.col"], dir,
# # base_key, "scale_y_accum_quant.col",
# # factor, i, local_dim, head_size)
# # save_multi_query_mode_qkv_int8(vals["scale_w_quant_orig"], dir,
# # base_key, "scale_w_quant_orig", factor,
# # i, local_dim, head_size)
# # save_multi_query_mode_qkv_int8(vals["scale_y_accum_quant"], dir,
# # base_key, "scale_y_accum_quant", factor,
# # i, local_dim, head_size)
# saved_keys_once = ["scale_x_orig_quant", "scale_y_quant_orig"]
# else:
# save_split(np.split(vals["weight.int8"], factor, axis=split_dim), dir,
# f"{base_key}.weight.int8", i, factor)
save_split(np.split(vals["weight.int8.col"], factor, axis=split_dim),
dir, f"{base_key}.weight.int8.col", i, factor)
if split_dim == -1:
save_split(
np.split(vals["scale_w_quant_orig.col"], factor,
axis=split_dim), dir,
f"{base_key}.scale_w_quant_orig.col", i, factor)
# save_split(
# np.split(vals["scale_y_accum_quant.col"],
# factor,
# axis=split_dim), dir,
# f"{base_key}.scale_y_accum_quant.col", i, factor)
# if is_qkv:
# save_split(
# np.split(vals["scale_y_accum_quant"],
# factor,
# axis=split_dim), dir,
# f"{base_key}.scale_y_accum_quant", i, factor)
# save_split(
# np.split(vals["scale_w_quant_orig"], factor,
# axis=split_dim), dir,
# f"{base_key}.scale_w_quant_orig", i, factor)
# saved_keys_once = ["scale_x_orig_quant", "scale_y_quant_orig"]
saved_keys_once = ["scale_x_orig_quant"]
else:
saved_keys_once += [
# "scale_w_quant_orig.col", "scale_y_accum_quant.col"
"scale_w_quant_orig.col"
]
if i == 0:
for save_key in saved_keys_once:
save_val(vals[save_key], dir, f"{base_key}.{save_key}")
def str_to_np_dtype(type_str):
convert_dict = {
"fp32": np.float32,
"fp16": np.float16,
}
dtype = convert_dict.get(type_str)
if dtype is None:
raise ValueError(f"{type_str} is an invalid storage type")
return dtype
def split_and_save_weight(i, saved_dir, factor, key, val, act_range, config):
saved_dir = {}
# The split_factor indicates the number of ranks to implement
# distributed GEMMs. For Tensor Parallelism, each rank/GPU works
# on split_hidden_dim // split_factor channels.
int8_outputs = config.get("int8_outputs", None)
multi_query_mode = config.get("multi_query_mode", False)
local_dim = config.get("local_dim", None)
save_int8 = int8_outputs == "all" or int8_outputs == "kv_cache_only"
if "input_layernorm.weight" in key or "input_layernorm.bias" in key or \
"attention.dense.bias" in key or "post_layernorm.weight" in key or \
"post_attention_layernorm.bias" in key or "mlp.dense_4h_to_h.bias" in key or \
"final_layernorm.weight" in key or "final_layernorm.bias" in key:
# shared weights, only need to convert the weights of rank 0
if i == 0:
save_val(val, saved_dir, key)
elif "attention.dense.weight" in key or "mlp.proj.weight" in key:
split_dim = 0
split_vals = np.split(val, factor, axis=split_dim)
# save_split(split_vals, saved_dir, key, i, factor)
if act_range is not None and int8_outputs == "all":
base_key = key.replace(".weight", "")
vals_i8 = generate_int8(val, act_range)
write_int8(vals_i8, saved_dir, base_key, split_dim, i, factor)
elif "mlp.fc.weight" in key or "mlp.gate.weight" in key:
split_dim = -1
split_vals = np.split(val, factor, axis=split_dim)
# save_split(split_vals, saved_dir, key, i, factor)
if act_range is not None and int8_outputs == "all":
base_key = key.replace(".weight", "")
vals_i8 = generate_int8(val, act_range)
write_int8(vals_i8, saved_dir, base_key, split_dim, i, factor)
elif "attention.query_key_value.weight" in key:
hidden_dim = val.shape[0]
if local_dim is None:
local_dim = val.shape[-1] // 3
if multi_query_mode:
head_size = (val.shape[-1] - local_dim) // 2
val = val.reshape(hidden_dim, local_dim + 2 * head_size)
w_q, w_k, w_v = np.split(val, [local_dim, local_dim + head_size],
axis=-1)
w_q_split = np.split(w_q, factor, axis=-1)
w_k_split = np.split(w_k, factor, axis=-1)
w_v_split = np.split(w_v, factor, axis=-1)
split_vals = [
np.concatenate((w_q_split[ii], w_k_split[ii], w_v_split[ii]),
axis=-1) for ii in range(factor)
]
split_dim = -1
else:
val = val.reshape(hidden_dim, 3, local_dim)
split_dim = -1
split_vals = np.split(val, factor, axis=split_dim)
# save_split(split_vals, saved_dir, key, i, factor)
if save_int8:
base_key = key.replace(".weight", "")
vals_i8 = generate_int8(val,
act_range,
is_qkv=True,
multi_query_mode=multi_query_mode)
write_int8(vals_i8,
saved_dir,
base_key,
split_dim,
i,
factor,
is_qkv=True,
multi_query_mode=multi_query_mode)
elif "attention.dense.smoother" in key or "mlp.proj.smoother" in key:
split_vals = np.split(val, factor, axis=0)
save_split(split_vals, saved_dir, key, i, factor)
else:
print(f"[WARNING] {key} not handled by converter")
return saved_dir