in aiops/ContraAD/solver.py [0:0]
def train(self):
time_now = time.time()
path = self.model_save_path
if not os.path.exists(path):
os.makedirs(path)
early_stopping = EarlyStopping(
patience=5, verbose=True, dataset_name=self.data_path,win_size=self.win_size
)
train_steps = len(self.train_loader)
for epoch in range(self.num_epochs):
iter_count = 0
epoch_time = time.time()
self.model.train()
for i, (input_data, labels) in enumerate(self.train_loader):
# batch,win_size,channel
iter_count += 1
input_data = input_data#.to(self.device)
z_score = torch.sum(normalize(input_data.detach()),dim=-1) # batch win_size
intra = self.model(input_data)
loss,_ = self.criterion(intra,z_score.detach())
self.optimizer.zero_grad()
if (i + 1) % 100 == 0:
speed = (time.time() - time_now) / iter_count
left_time = speed * ((self.num_epochs - epoch) * train_steps - i)
print(f"\tspeed: {speed:.4f}s/iter; left time: {left_time:.4f}s")
iter_count = 0
time_now = time.time()
accelerator.backward(loss)
self.optimizer.step()
vali_loss1, vali_loss2 = self.vali(self.test_loader)
early_stopping(vali_loss1, vali_loss2, self.model, path)
if early_stopping.early_stop:
print("stopped")
break
print(
"Epoch: {0}, Cost time: {1:.3f}s Vali Loss: {2:.3f} ".format(
epoch + 1, time.time() - epoch_time,0.0
)
)
adjust_learning_rate(self.optimizer, epoch + 1, self.lr)