in aiops/ContraLSP/mortalty/main.py [0:0]
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--explainers",
type=str,
default=[
# "deep_lift",
# "dyna_mask",
# "extremal_mask", #1018265, mean(0.2939)
"gate_mask", #577485
# "fit",
# "gradient_shap",
# "integrated_gradients",
# "lime",
# "augmented_occlusion",
# "occlusion",
# "retain",
],
nargs="+",
metavar="N",
help="List of explainer to use.",
)
parser.add_argument(
"--areas",
type=float,
default=[
0.1,
0.2,
0.3,
0.4,
0.5,
0.6,
],
nargs="+",
metavar="N",
help="List of areas to use.",
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="Which device to use.",
)
parser.add_argument(
"--fold",
type=int,
default=1,
help="Fold of the cross-validation.",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="Random seed for data generation.",
)
parser.add_argument(
"--train",
type=bool,
default=False,
help="Train thr rnn classifier.",
)
parser.add_argument(
"--deterministic",
action="store_true",
help="Whether to make training deterministic or not.",
)
parser.add_argument(
"--lambda-1",
type=float,
default=0.001, # 0.01
help="Lambda 1 hyperparameter.",
)
parser.add_argument(
"--lambda-2",
type=float,
default=0.01, #0.01
help="Lambda 2 hyperparameter.",
)
parser.add_argument(
"--output-file",
type=str,
default="results_gate.csv",
help="Where to save the results.",
)
return parser.parse_args()