def parse_args()

in aiops/ContraLSP/switchstate/main.py [0:0]


def parse_args():
    parser = ArgumentParser()
    parser.add_argument(
        "--explainers",
        type=str,
        default=[
            "occlusion",
            "augmented_occlusion",
            "integrated_gradients",
            "gradient_shap",
            "deep_lift",
            "lime",
            "fit",
            "retain",
            "dyna_mask",
            "extremal_mask",  # tensor(13723.2715, grad_fn=<SumBackward0>) tensor(0.2366, grad_fn=<MeanBackward0>)
            "gate_mask",# tensor(14289.1562) tensor(0.4865, grad_fn=<MeanBackward0>) tensor(0.0310, gra>) 1.1 1 tensor(0.1030, grad_fn=<MseLossBackward0>)
        ],
        nargs="+",
        metavar="N",
        help="List of explainer to use.",
    )
    parser.add_argument(
        "--device",
        type=str,
        default="cpu",
        help="Which device to use.",
    )
    parser.add_argument(
        "--fold",
        type=int,
        default=1,
        help="Fold of the cross-validation.",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for data generation.",
    )
    parser.add_argument(
        "--train",
        type=bool,
        default=False,
        help="Train the rnn classifier.",
    )
    parser.add_argument(
        "--deterministic",
        action="store_true",
        help="Whether to make training deterministic or not.",
    )
    parser.add_argument(
        "--lambda-1",
        type=float,
        default=1,
        help="Lambda 1 hyperparameter.",
    )
    parser.add_argument(
        "--lambda-2",
        type=float,
        default=2,
        help="Lambda 2 hyperparameter.",
    )
    parser.add_argument(
        "--output-file",
        type=str,
        default="results.csv",
        help="Where to save the results.",
    )
    return parser.parse_args()