in aiops/AnomalyDetection/model/eval_methods.py [0:0]
def adjust_predicts(score, label,
threshold=None,
pred=None,
calc_latency=False):
"""
Calculate adjusted predict labels using given `score`, `threshold` (or given `pred`) and `label`.
Args:
score (np.ndarray): The anomaly score
label (np.ndarray): The ground-truth label
threshold (float): The threshold of anomaly score.
A point is labeled as "anomaly" if its score is lower than the threshold.
pred (np.ndarray or None): if not None, adjust `pred` and ignore `score` and `threshold`,
calc_latency (bool):
Returns:
np.ndarray: predict labels
"""
if len(score) != len(label):
raise ValueError("score and label must have the same length")
score = np.asarray(score)
label = np.asarray(label)
latency = 0
if pred is None:
predict = score < threshold
else:
predict = pred
actual = label > 0.1
anomaly_state = False
anomaly_count = 0
for i in range(len(score)):
if actual[i] and predict[i] and not anomaly_state:
anomaly_state = True
anomaly_count += 1
for j in range(i, 0, -1):
if not actual[j]:
break
else:
if not predict[j]:
predict[j] = True
latency += 1
elif not actual[i]:
anomaly_state = False
if anomaly_state:
predict[i] = True
if calc_latency:
return predict, latency / (anomaly_count + 1e-4)
else:
return predict