in aiops/MicroAgents/layers/data_layer/anomaly_detection.py [0:0]
def rule_detection(recent_df, metric_columns, dataset):
res = {
'increased_metric': set(),
'decresed_metric': set(),
'fluctuate_metric': set()
}
for metric_type in metric_columns:
if metric_type == "CpuUsageRate(%)" or metric_type == 'MemoryUsageRate(%)':
if recent_df[metric_type].max() > 80:
res['increased_metric'].add(metric_type)
else:
if dataset == "GShop":
# for hipster
if recent_df[metric_type].max() > 200:
res['increased_metric'].add(metric_type)
elif dataset == "TrainTickets":
# for ts
if recent_df[metric_type].max() > 300:
res['increased_metric'].add(metric_type)
return res