aiops/ContraLSP/attribution/mask.py (180 lines of code) (raw):
import time
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import torch
import torch.optim as optim
from torch.nn import Softmax
from attribution.perturbation import Perturbation
from utils.metrics import get_entropy, get_information
class Mask:
def __init__(
self,
perturbation: Perturbation,
device,
task: str = "regression",
verbose: bool = False,
random_seed: int = 42,
deletion_mode: bool = False,
eps: float = 1.0e-7,
):
self.verbose = verbose
self.device = device
self.random_seed = random_seed
self.deletion_mode = deletion_mode
self.perturbation = perturbation
self.eps = eps
self.task = task
self.X = None
self.mask_tensor = None
self.T = None
self.N_features = None
self.Y_target = None
self.f = None
self.n_epoch = None
self.hist = None
self.loss_function = None
# Mask Optimization
def fit(
self,
X,
f,
loss_function,
target=None,
n_epoch: int = 500,
keep_ratio: float = 0.5,
initial_mask_coeff: float = 0.5,
size_reg_factor_init: float = 0.5,
size_reg_factor_dilation: float = 100,
time_reg_factor: float = 0,
learning_rate: float = 1.0e-1,
momentum: float = 0.9,
):
# Initialize the random seed and the attributes
t_fit = time.time()
torch.manual_seed(self.random_seed)
reg_factor = size_reg_factor_init
error_factor = 1 - 2 * self.deletion_mode # In deletion mode, the error has to be maximized
reg_multiplicator = np.exp(np.log(size_reg_factor_dilation) / n_epoch)
self.f = f
self.X = X
self.n_epoch = n_epoch
self.T, self.N_features = X.shape
self.loss_function = loss_function
if target is None:
self.Y_target = f(X)
else:
self.Y_target = target
# The initial mask is defined with the initial mask coefficient
self.mask_tensor = initial_mask_coeff * torch.ones(size=X.shape, device=self.device)
# Create a copy of the mask that is going to be trained, the optimizer and the history
mask_tensor_new = self.mask_tensor.clone().detach().requires_grad_(True)
optimizer = optim.SGD([mask_tensor_new], lr=learning_rate, momentum=momentum)
hist = torch.zeros(3, 0)
# Initializing the reference vector used in the size regulator (called r_a in the paper)
reg_ref = torch.zeros(int((1 - keep_ratio) * self.T * self.N_features))
reg_ref = torch.cat((reg_ref, torch.ones(self.T * self.N_features - reg_ref.shape[0]))).to(self.device)
# Run the optimization
for k in range(n_epoch):
# Measure the loop starting time
t_loop = time.time()
# Generate perturbed input and outputs
if self.deletion_mode:
X_pert = self.perturbation.apply(X=X, mask_tensor=1 - mask_tensor_new)
else:
X_pert = self.perturbation.apply(X=X, mask_tensor=mask_tensor_new)
Y_pert = f(X_pert)
# Evaluate the overall loss (error [L_e] + size regulation [L_a] + time variation regulation [L_c])
error = loss_function(Y_pert, self.Y_target)
mask_tensor_sorted = mask_tensor_new.reshape(self.T * self.N_features).sort()[0]
size_reg = ((reg_ref - mask_tensor_sorted) ** 2).mean()
time_reg = (torch.abs(mask_tensor_new[1 : self.T - 1, :] - mask_tensor_new[: self.T - 2, :])).mean()
loss = error_factor * error + reg_factor * size_reg + time_reg_factor * time_reg
# Apply the gradient step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Ensures that the constraint is fulfilled
mask_tensor_new.data = mask_tensor_new.data.clamp(0, 1)
# Save the error and the regulator
metrics = torch.tensor([error.detach().cpu(), size_reg.detach().cpu(), time_reg.detach().cpu()]).unsqueeze(
1
)
hist = torch.cat((hist, metrics), dim=1)
# Increase the regulator coefficient
reg_factor *= reg_multiplicator
# Measure the loop ending time
t_loop = time.time() - t_loop
if self.verbose and k%20==0:
print(
f"Epoch {k + 1}/{n_epoch}: error = {error.data:.3g} ; size regulator = {size_reg.data:.3g} ;"
f" time regulator = {time_reg.data:.3g} ; time elapsed = {t_loop:.3g} s"
)
# Update the mask and history tensor, print the final message
self.mask_tensor = mask_tensor_new
self.hist = hist
t_fit = time.time() - t_fit
print(
100 * "="
+ "\n"
+ f"The optimization finished: error = {error.data:.3g} ; size regulator = {size_reg.data:.3g} ;"
f" time regulator = {time_reg.data:.3g} ; time elapsed = {t_fit:.3g} s" + "\n" + 100 * "=" + "\n"
)
def get_smooth_mask(self, sigma=1):
"""This method smooths the mask tensor by applying a temporal Gaussian filter for each feature.
Args:
sigma: Width of the Gaussian filter.
Returns:
torch.Tensor: The smoothed mask.
"""
# Define the Gaussian smoothing kernel
T_axis = torch.arange(1, self.T + 1, dtype=int, device=self.device)
T1_tensor = T_axis.unsqueeze(1).unsqueeze(2)
T2_tensor = T_axis.unsqueeze(0).unsqueeze(2)
kernel_tensor = torch.exp(-1.0 * (T1_tensor - T2_tensor) ** 2 / (2.0 * sigma ** 2))
kernel_tensor = torch.divide(kernel_tensor, torch.sum(kernel_tensor, 0))
kernel_tensor = kernel_tensor.repeat(1, 1, self.N_features)
# Smooth the mask tensor by applying the kernel
mask_tensor_smooth = torch.einsum("sti,si->ti", kernel_tensor, self.mask_tensor)
return mask_tensor_smooth
def extract_submask(self, mask_tensor, ids_time, ids_feature):
# If no identifiers have been specified, we use the whole data
if ids_time is None:
ids_time = [k for k in range(self.T)]
if ids_feature is None:
ids_feature = [k for k in range(self.N_features)]
# Extract the relevant data in the mask
submask_tensor = mask_tensor.clone().detach().requires_grad_(False).cpu()
submask_tensor = submask_tensor[ids_time, :]
submask_tensor = submask_tensor[:, ids_feature]
return submask_tensor
# Mask plots
def plot_mask(self, ids_time=None, ids_feature=None, smooth: bool = False, sigma: float = 1.0):
sns.set()
# Smooth the mask if required
if smooth:
mask_tensor = self.get_smooth_mask(sigma)
else:
mask_tensor = self.mask_tensor
# Extract submask from ids
submask_tensor_np = self.extract_submask(mask_tensor, ids_time, ids_feature).numpy()
df = pd.DataFrame(data=np.transpose(submask_tensor_np), index=ids_feature, columns=ids_time)
# Generate heatmap plot
color_map = sns.diverging_palette(10, 133, as_cmap=True)
heat_map = sns.heatmap(data=df, cmap=color_map, cbar_kws={"label": "Mask"}, vmin=0, vmax=1)
plt.xlabel("Time")
plt.ylabel("Feature Number")
plt.title("Mask coefficients over time")
plt.show()
def plot_hist(self):
"""This method plots the metrics for different epochs of optimization."""
if self.hist is None:
raise RuntimeError("The mask should be optimized before plotting the metrics.")
sns.set()
# Extract the error and regulator history from the history tensor
error, size_reg, time_reg = self.hist[:].clone().detach().cpu().numpy()
epoch_axis = np.arange(1, len(error) + 1)
# Generate the subplots
fig, axs = plt.subplots(3)
axs[0].plot(epoch_axis, error)
axs[0].set(xlabel="Epoch", ylabel="Error")
axs[1].plot(epoch_axis, size_reg)
axs[1].set(xlabel="Epoch", ylabel="Size Regulator")
axs[2].plot(epoch_axis, time_reg)
axs[2].set(xlabel="Epoch", ylabel="Time Regulator")
plt.show()
# Mask metrics
def get_information(self, ids_time=None, ids_feature=None, normalize: bool = False):
"""This methods returns the mask information contained in the identifiers.
Args:
normalize: Whether to normalize.
ids_time: List of the times that should contribute.
ids_feature: List of the features that should contribute.
Returns:
Information content as a torch scalar.
"""
return get_information(
self.mask_tensor, ids_time=ids_time, ids_feature=ids_feature, normalize=normalize, eps=self.eps
)
def get_entropy(self, ids_time=None, ids_feature=None, normalize: bool = False):
"""This methods returns the mask entropy contained in the identifiers.
Args:
normalize: Whether to normalize.
ids_time: List of the times that should contribute.
ids_feature: List of the features that should contribute.
Returns:
Entropy as a torch scalar.
"""
return get_entropy(
self.mask_tensor, ids_time=ids_time, ids_feature=ids_feature, normalize=normalize, eps=self.eps
)
def get_error(self):
"""This methods returns the error between the unperturbed and perturbed input [L_e].
Returns:
Error as a torch scalar.
"""
if self.deletion_mode:
X_pert = self.perturbation.apply(X=self.X, mask_tensor=1 - self.mask_tensor)
else:
X_pert = self.perturbation.apply(X=self.X, mask_tensor=self.mask_tensor)
Y_pert = self.f(X_pert)
if self.task == "classification":
Y_pert = torch.log(Softmax(dim=1)(Y_pert))
return self.loss_function(Y_pert, self.Y_target)
def get_error_multiple(self):
# Assume mask of shape (num_sample, T, nfeat)
if self.deletion_mode:
X_pert = self.perturbation.apply_multiple(X=self.X, mask_tensor=1 - self.mask_tensor)
else:
X_pert = self.perturbation.apply_multiple(X=self.X, mask_tensor=self.mask_tensor)
Y_pert = self.f(X_pert) # (num_sample, T, 2)
if self.task == "classification":
Y_pert = torch.log(Softmax(dim=2)(Y_pert))
return self.loss_function(Y_pert.unsqueeze(0), self.Y_target.unsqueeze(0))