aiops/ContraLSP/attribution/mask_group.py (284 lines of code) (raw):
import time
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import torch
import torch.optim as optim
import pandas as pd
from attribution.mask import Mask
from attribution.perturbation import Perturbation
from tqdm import tqdm
class MaskGroup:
def __init__(
self,
perturbation: Perturbation,
device,
random_seed: int = 987,
deletion_mode: bool = False,
verbose: bool = True,
):
self.perturbation = perturbation
self.device = device
self.random_seed = random_seed
self.verbose = verbose
self.deletion_mode = deletion_mode
self.mask_list = None
self.area_list = None
self.f = None
self.X = None
self.n_epoch = None
self.T = None
self.N_features = None
self.Y_target = None
self.masks_tensor = None
self.mask_tensor = None
self.hist = None
def fit(
self,
X,
f,
area_list,
loss_function,
n_epoch: int = 1000,
initial_mask_coeff: float = 0.5,
size_reg_factor_init: float = 0.1,
size_reg_factor_dilation: float = 100,
learning_rate: float = 0.1,
momentum: float = 0.9,
time_reg_factor: float = 0,
):
# Ensure that the area list is sorted
area_list.sort()
self.area_list = area_list
N_area = len(area_list)
# Create a list of masks
mask_list = []
# Initialize the random seed and the attributes
t_fit = time.time()
torch.manual_seed(self.random_seed)
reg_factor = size_reg_factor_init
error_factor = 1 - 2 * self.deletion_mode # In deletion mode, the error has to be maximized
reg_multiplicator = np.exp(np.log(size_reg_factor_dilation) / n_epoch)
self.f = f
self.X = X
self.n_epoch = n_epoch
self.T, self.N_features = X.shape
self.Y_target = f(X)
# The initial mask tensor has all coefficients set to initial_mask_coeff
self.masks_tensor = initial_mask_coeff * torch.ones(size=(N_area, self.T, self.N_features), device=self.device)
# The target is the same for each mask so we simply repeat it along the first axis
Y_target_group = self.Y_target.clone().detach().unsqueeze(0).repeat(N_area, 1, 1)
# Create a copy of the extremal tensor that is going to be trained, the optimizer and the history
masks_tensor_new = self.masks_tensor.clone().detach().requires_grad_(True)
optimizer = optim.SGD([masks_tensor_new], lr=learning_rate, momentum=momentum)
hist = torch.zeros(3, 0)
# Initializing the reference vector used in the regulator
reg_ref = torch.ones((N_area, self.T * self.N_features), dtype=torch.float32, device=self.device)
for i, area in enumerate(self.area_list):
reg_ref[i, : int((1 - area) * self.T * self.N_features)] = 0.0
# Run the optimization
for k in range(n_epoch):
# Measure the loop starting time
t_loop = time.time()
# Generate perturbed input and outputs
if self.deletion_mode:
X_pert = self.perturbation.apply_extremal(X=X, extremal_tensor=1 - masks_tensor_new)
else:
X_pert = self.perturbation.apply_extremal(X=X, extremal_tensor=masks_tensor_new)
Y_pert = torch.stack([f(x_pert) for x_pert in torch.unbind(X_pert, dim=0)], dim=0)
# Evaluate the overall loss (error [L_e] + size regulation [L_a] + time variation regulation [L_c])
error = loss_function(Y_pert, Y_target_group)
masks_tensor_sorted = masks_tensor_new.reshape(N_area, self.T * self.N_features).sort(dim=1)[0]
size_reg = ((reg_ref - masks_tensor_sorted) ** 2).mean()
time_reg = (torch.abs(masks_tensor_new[:, 1 : self.T - 1, :] - masks_tensor_new[:, : self.T - 2, :])).mean()
loss = error_factor * error + reg_factor * size_reg + time_reg_factor * time_reg
# Apply the gradient step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Ensures that the constraint is fulfilled
masks_tensor_new.data = masks_tensor_new.data.clamp(0, 1)
# Save the error and the regulator
metrics = torch.tensor([error, size_reg, time_reg]).cpu().unsqueeze(1)
hist = torch.cat((hist, metrics), dim=1)
# Increase the regulator coefficient
reg_factor *= reg_multiplicator
# Measure the loop ending time
t_loop = time.time() - t_loop
if self.verbose and k%200==0:
print(
f"Epoch {k + 1}/{n_epoch}: error = {error.data:.3g} ; "
f"size regulator = {size_reg.data:.3g} ; time regulator = {time_reg.data:.3g} ;"
f" time elapsed = {t_loop:.3g} s"
)
print((masks_tensor_new.sum()).data/N_area)
# Update the mask and history tensor, print the final message
self.masks_tensor = masks_tensor_new.clone().detach().requires_grad_(False)
self.hist = hist
t_fit = time.time() - t_fit
print(
f"The optimization finished: error = {error.data:.3g} ; size regulator = {size_reg.data:.3g} ;"
f" time regulator = {time_reg.data:.3g} ; time elapsed = {t_fit:.3g} s"
)
# Store the individual mask coefficients in distinct mask objects
for index, mask_tensor in enumerate(self.masks_tensor.unbind(dim=0)):
mask = Mask(
perturbation=self.perturbation, device=self.device, verbose=False, deletion_mode=self.deletion_mode
)
mask.mask_tensor = mask_tensor
mask.hist = self.hist
mask.f = self.f
mask.X = self.X
mask.n_epoch = self.n_epoch
mask.T, mask.N_features = self.T, self.N_features
mask.Y_target = self.Y_target
mask.loss_function = loss_function
mask_list.append(mask)
self.mask_list = mask_list
def fit_multiple(
self,
X,
f,
area_list,
loss_function_multiple,
use_last_timestep_only: bool = False,
n_epoch: int = 200,
initial_mask_coeff: float = 0.5,
size_reg_factor_init: float = 0.1,
size_reg_factor_dilation: float = 100,
learning_rate: float = 0.1,
momentum: float = 0.9,
time_reg_factor: float = 0.01,
):
# Ensure that the area list is sorted
area_list.sort()
self.area_list = area_list
N_area = len(area_list)
# Create a list of masks
mask_list = []
# Initialize the random seed and the attributes
t_fit = time.time()
torch.manual_seed(self.random_seed)
reg_factor = size_reg_factor_init
error_factor = 1 - 2 * self.deletion_mode # In deletion mode, the error has to be maximized
reg_multiplicator = np.exp(np.log(size_reg_factor_dilation) / n_epoch)
self.f = f
self.X = X
self.n_epoch = n_epoch
num_samples, self.T, self.N_features = X.shape
self.Y_target = f(X) # num_samples, num_time, num_state=2
if use_last_timestep_only:
self.Y_target = self.Y_target[:, -1:, :]
# The initial mask tensor has all coefficients set to initial_mask_coeff
self.masks_tensor = initial_mask_coeff * torch.ones(size=(N_area, num_samples, self.T, self.N_features), device=self.device)
# The target is the same for each mask so we simply repeat it along the first axis
Y_target_group = self.Y_target.clone().detach().unsqueeze(0).repeat(N_area, 1, 1, 1)
# Create a copy of the extremal tensor that is going to be trained, the optimizer and the history
masks_tensor_new = self.masks_tensor.clone().detach().requires_grad_(True)
# optimizer = optim.SGD([masks_tensor_new], lr=learning_rate, momentum=momentum)
optimizer = optim.Adam([masks_tensor_new], lr=learning_rate)
metrics = []
# Initializing the reference vector used in the regulator
reg_ref = torch.ones((N_area, num_samples, self.T * self.N_features), dtype=torch.float32, device=self.device)
for i, area in enumerate(self.area_list):
reg_ref[i, :, :int((1 - area) * self.T * self.N_features)] = 0.0
# Run the optimization
for k in tqdm(range(n_epoch)):
# Measure the loop starting time
t_loop = time.time()
# Generate perturbed input and outputs
if self.deletion_mode:
X_pert = self.perturbation.apply_extremal_multiple(X=X, extremal_tensor=1 - masks_tensor_new)
else:
X_pert = self.perturbation.apply_extremal_multiple(X=X, extremal_tensor=masks_tensor_new)
# x_pert (num_samples, T, num_feature)
# f(x_pert) = (num_sample, T, num_state)
# y_pert = (num_area, num_sample, T, num_state)
# x_pert (T, num_feature)
# f(x_pert) = (T, num_state)
# Y_pert = (n_area, T, num_state)
X_pert_flatten = X_pert.reshape(N_area * num_samples, self.T, self.N_features)
Y_pert_flatten = f(X_pert_flatten) # (N_area * num_samples, T, num_state)
if use_last_timestep_only:
Y_pert = Y_pert_flatten.reshape(N_area, num_samples, 1, -1)
else:
Y_pert = Y_pert_flatten.reshape(N_area, num_samples, self.T, -1)
# Evaluate the overall loss (error [L_e] + size regulation [L_a] + time variation regulation [L_c])
error = loss_function_multiple(Y_pert, Y_target_group) # (num_sample)
masks_tensor_sorted = masks_tensor_new.reshape(N_area, num_samples, self.T * self.N_features).sort(dim=2)[0]
size_reg = ((reg_ref - masks_tensor_sorted) ** 2).mean(dim=[0, 2])
masks_tensor_diff = masks_tensor_new[:, :, 1: self.T - 1, :] - masks_tensor_new[:, :, :self.T - 2, :]
time_reg = (torch.abs(masks_tensor_diff)).mean(dim=[0, 2, 3])
loss = error_factor * error + reg_factor * size_reg + time_reg_factor * time_reg
# Apply the gradient step
optimizer.zero_grad()
loss.backward(torch.ones_like(loss))
optimizer.step()
# Ensures that the constraint is fulfilled
masks_tensor_new.data = masks_tensor_new.data.clamp(0, 1)
# Save the error and the regulator
metric = torch.stack([error, size_reg, time_reg], dim=1).detach().cpu().numpy()
metrics.append(metric)
# Increase the regulator coefficient
reg_factor *= reg_multiplicator
# Measure the loop ending time
t_loop = time.time() - t_loop
if self.verbose and k%20==0:
print(
f"Epoch {k + 1}/{n_epoch}: error = {error.mean().data:.3g} ; "
f"size regulator = {size_reg.mean().data:.3g} ; time regulator = {time_reg.mean().data:.3g} ;"
f" time elapsed = {t_loop:.3g} s"
)
print((masks_tensor_new.sum()/(N_area*num_samples)).data, X.shape[2]*X.shape[1])
# Update the mask and history tensor, print the final message
self.masks_tensor = masks_tensor_new.clone().detach().requires_grad_(False) # (N_area, num_samples, T, nfeat)
self.hist = torch.from_numpy(np.stack(metrics, axis=2))
t_fit = time.time() - t_fit
print(
f"The optimization finished: error = {error.mean().data:.3g} ; size regulator = {size_reg.mean().data:.3g} ;"
f" time regulator = {time_reg.mean().data:.3g} ; time elapsed = {t_fit:.3g} s"
)
# Store the individual mask coefficients in distinct mask objects
for index, mask_tensor in enumerate(self.masks_tensor.unbind(dim=0)):
mask = Mask(
perturbation=self.perturbation, device=self.device, verbose=False, deletion_mode=self.deletion_mode
)
mask.mask_tensor = mask_tensor
mask.hist = self.hist
mask.f = self.f
mask.X = self.X
mask.n_epoch = self.n_epoch
mask.T, mask.N_features = self.T, self.N_features
mask.Y_target = self.Y_target
mask.loss_function = loss_function_multiple
mask_list.append(mask)
self.mask_list = mask_list
def get_best_mask(self):
"""This method returns the mask with lowest error."""
error_list = [mask.get_error() for mask in self.mask_list]
best_index = error_list.index(min(error_list))
print(
f"The mask of area {self.area_list[best_index]:.2g} is"
f" the best with error = {error_list[best_index]:.3g}."
)
return self.mask_list[best_index]
def get_extremal_mask(self, threshold):
"""This method returns the extremal mask for the acceptable error threshold (called epsilon in the paper)."""
error_list = [mask.get_error() for mask in self.mask_list]
# If the minimal error is above the threshold, the best we can do is select the mask with lowest error
if min(error_list) > threshold:
return self.get_best_mask()
else:
for id_mask, error in enumerate(error_list):
if error < threshold:
print(
f"The mask of area {self.area_list[id_mask]:.2g} is"
f" extremal with error = {error_list[id_mask]:.3g}."
)
return self.mask_list[id_mask]
def get_extremal_mask_multiple(self, thresholds):
"""This method returns the extremal mask for the acceptable error threshold (called epsilon in the paper)."""
error_list = torch.stack([mask.get_error_multiple() for mask in self.mask_list], dim=1)
mask_stacked = torch.stack([mask.mask_tensor for mask in self.mask_list])
num_area, num_samples, num_times, num_features = mask_stacked.shape
# If the minimal error is above the threshold, the best we can do is select the mask with lowest error
thres_mask = torch.min(error_list, dim=1)[0] > thresholds
best_mask = torch.argmin(error_list, dim=1) #(num_sample)
error_mask = (error_list < thresholds.view(-1, 1)) * torch.arange(-len(self.mask_list), 0).view(1, -1).to(self.device)
first_mask = torch.argmin(error_mask, dim=1)
indexes = torch.where(thres_mask, best_mask, first_mask) # (num_sample)
selected_masks = torch.gather(mask_stacked, 0, indexes.view(1, num_samples, 1, 1).expand(1, num_samples, num_times, num_features))
self.mask_tensor = selected_masks.reshape(num_samples, num_times, num_features)
return selected_masks.reshape(num_samples, num_times, num_features) #(num_samples, num_times, num_features)
def plot_errors(self):
"""This method plots the error as a function of the mask size."""
sns.set()
error_list = [mask.get_error() for mask in self.mask_list]
plt.plot(self.area_list, error_list)
plt.title("Errors for the various masks")
plt.xlabel("Mask area")
plt.ylabel("Error")
plt.show()
def get_smooth_mask(self, sigma=1):
"""This method smooths the mask tensor by applying a temporal Gaussian filter for each feature.
Args:
sigma: Width of the Gaussian filter.
Returns:
torch.Tensor: The smoothed mask.
"""
# Define the Gaussian smoothing kernel
T_axis = torch.arange(1, self.T + 1, dtype=int, device=self.device)
T1_tensor = T_axis.unsqueeze(1).unsqueeze(2)
T2_tensor = T_axis.unsqueeze(0).unsqueeze(2)
kernel_tensor = torch.exp(-1.0 * (T1_tensor - T2_tensor) ** 2 / (2.0 * sigma ** 2))
kernel_tensor = torch.divide(kernel_tensor, torch.sum(kernel_tensor, 0))
kernel_tensor = kernel_tensor.repeat(1, 1, self.N_features)
# Smooth the mask tensor by applying the kernel
mask_tensor_smooth = torch.einsum("sti,si->ti", kernel_tensor, self.mask_tensor)
return mask_tensor_smooth
def extract_submask(self, mask_tensor, ids_time, ids_feature):
"""This method extracts a submask specified with specified indices.
Args:
mask_tensor: The tensor from which data should be extracted.
ids_time: List of the times that should be extracted.
ids_feature: List of the features that should be extracted.
Returns:
torch.Tensor: Submask extracted based on the indices.
"""
# If no identifiers have been specified, we use the whole data
if ids_time is None:
ids_time = [k for k in range(self.T)]
if ids_feature is None:
ids_feature = [k for k in range(self.N_features)]
# Extract the relevant data in the mask
submask_tensor = mask_tensor.clone().detach().requires_grad_(False).cpu()
submask_tensor = submask_tensor[ids_time, :]
submask_tensor = submask_tensor[:, ids_feature]
return submask_tensor
def plot_mask(self, idx=0, ids_time=None, ids_feature=None, smooth: bool = False, sigma: float = 1.0):
"""This method plots (part of) the mask.
Args:
ids_time: List of the times that should appear on the plot.
ids_feature: List of the features that should appear on the plot.
smooth: True if the mask should be smoothed before plotting.
sigma: Width of the smoothing Gaussian kernel.
Returns:
None
"""
sns.set()
# Smooth the mask if required
if smooth:
mask_tensor = self.get_smooth_mask(sigma)
else:
mask_tensor = self.mask_tensor
# Extract submask from ids
submask_tensor_np = self.extract_submask(mask_tensor[idx], ids_time, ids_feature).numpy()
df = pd.DataFrame(data=np.transpose(submask_tensor_np), index=ids_feature, columns=ids_time)
# Generate heatmap plot
color_map = sns.diverging_palette(10, 133, as_cmap=True)
heat_map = sns.heatmap(data=df, cmap=color_map, cbar_kws={"label": "Mask"}, vmin=0, vmax=1)
plt.xlabel("Time")
plt.ylabel("Feature Number")
plt.title("Mask coefficients over time")
plt.show()