aiops/ContraLSP/attribution/mask_group.py (284 lines of code) (raw):

import time import matplotlib.pyplot as plt import numpy as np import seaborn as sns import torch import torch.optim as optim import pandas as pd from attribution.mask import Mask from attribution.perturbation import Perturbation from tqdm import tqdm class MaskGroup: def __init__( self, perturbation: Perturbation, device, random_seed: int = 987, deletion_mode: bool = False, verbose: bool = True, ): self.perturbation = perturbation self.device = device self.random_seed = random_seed self.verbose = verbose self.deletion_mode = deletion_mode self.mask_list = None self.area_list = None self.f = None self.X = None self.n_epoch = None self.T = None self.N_features = None self.Y_target = None self.masks_tensor = None self.mask_tensor = None self.hist = None def fit( self, X, f, area_list, loss_function, n_epoch: int = 1000, initial_mask_coeff: float = 0.5, size_reg_factor_init: float = 0.1, size_reg_factor_dilation: float = 100, learning_rate: float = 0.1, momentum: float = 0.9, time_reg_factor: float = 0, ): # Ensure that the area list is sorted area_list.sort() self.area_list = area_list N_area = len(area_list) # Create a list of masks mask_list = [] # Initialize the random seed and the attributes t_fit = time.time() torch.manual_seed(self.random_seed) reg_factor = size_reg_factor_init error_factor = 1 - 2 * self.deletion_mode # In deletion mode, the error has to be maximized reg_multiplicator = np.exp(np.log(size_reg_factor_dilation) / n_epoch) self.f = f self.X = X self.n_epoch = n_epoch self.T, self.N_features = X.shape self.Y_target = f(X) # The initial mask tensor has all coefficients set to initial_mask_coeff self.masks_tensor = initial_mask_coeff * torch.ones(size=(N_area, self.T, self.N_features), device=self.device) # The target is the same for each mask so we simply repeat it along the first axis Y_target_group = self.Y_target.clone().detach().unsqueeze(0).repeat(N_area, 1, 1) # Create a copy of the extremal tensor that is going to be trained, the optimizer and the history masks_tensor_new = self.masks_tensor.clone().detach().requires_grad_(True) optimizer = optim.SGD([masks_tensor_new], lr=learning_rate, momentum=momentum) hist = torch.zeros(3, 0) # Initializing the reference vector used in the regulator reg_ref = torch.ones((N_area, self.T * self.N_features), dtype=torch.float32, device=self.device) for i, area in enumerate(self.area_list): reg_ref[i, : int((1 - area) * self.T * self.N_features)] = 0.0 # Run the optimization for k in range(n_epoch): # Measure the loop starting time t_loop = time.time() # Generate perturbed input and outputs if self.deletion_mode: X_pert = self.perturbation.apply_extremal(X=X, extremal_tensor=1 - masks_tensor_new) else: X_pert = self.perturbation.apply_extremal(X=X, extremal_tensor=masks_tensor_new) Y_pert = torch.stack([f(x_pert) for x_pert in torch.unbind(X_pert, dim=0)], dim=0) # Evaluate the overall loss (error [L_e] + size regulation [L_a] + time variation regulation [L_c]) error = loss_function(Y_pert, Y_target_group) masks_tensor_sorted = masks_tensor_new.reshape(N_area, self.T * self.N_features).sort(dim=1)[0] size_reg = ((reg_ref - masks_tensor_sorted) ** 2).mean() time_reg = (torch.abs(masks_tensor_new[:, 1 : self.T - 1, :] - masks_tensor_new[:, : self.T - 2, :])).mean() loss = error_factor * error + reg_factor * size_reg + time_reg_factor * time_reg # Apply the gradient step optimizer.zero_grad() loss.backward() optimizer.step() # Ensures that the constraint is fulfilled masks_tensor_new.data = masks_tensor_new.data.clamp(0, 1) # Save the error and the regulator metrics = torch.tensor([error, size_reg, time_reg]).cpu().unsqueeze(1) hist = torch.cat((hist, metrics), dim=1) # Increase the regulator coefficient reg_factor *= reg_multiplicator # Measure the loop ending time t_loop = time.time() - t_loop if self.verbose and k%200==0: print( f"Epoch {k + 1}/{n_epoch}: error = {error.data:.3g} ; " f"size regulator = {size_reg.data:.3g} ; time regulator = {time_reg.data:.3g} ;" f" time elapsed = {t_loop:.3g} s" ) print((masks_tensor_new.sum()).data/N_area) # Update the mask and history tensor, print the final message self.masks_tensor = masks_tensor_new.clone().detach().requires_grad_(False) self.hist = hist t_fit = time.time() - t_fit print( f"The optimization finished: error = {error.data:.3g} ; size regulator = {size_reg.data:.3g} ;" f" time regulator = {time_reg.data:.3g} ; time elapsed = {t_fit:.3g} s" ) # Store the individual mask coefficients in distinct mask objects for index, mask_tensor in enumerate(self.masks_tensor.unbind(dim=0)): mask = Mask( perturbation=self.perturbation, device=self.device, verbose=False, deletion_mode=self.deletion_mode ) mask.mask_tensor = mask_tensor mask.hist = self.hist mask.f = self.f mask.X = self.X mask.n_epoch = self.n_epoch mask.T, mask.N_features = self.T, self.N_features mask.Y_target = self.Y_target mask.loss_function = loss_function mask_list.append(mask) self.mask_list = mask_list def fit_multiple( self, X, f, area_list, loss_function_multiple, use_last_timestep_only: bool = False, n_epoch: int = 200, initial_mask_coeff: float = 0.5, size_reg_factor_init: float = 0.1, size_reg_factor_dilation: float = 100, learning_rate: float = 0.1, momentum: float = 0.9, time_reg_factor: float = 0.01, ): # Ensure that the area list is sorted area_list.sort() self.area_list = area_list N_area = len(area_list) # Create a list of masks mask_list = [] # Initialize the random seed and the attributes t_fit = time.time() torch.manual_seed(self.random_seed) reg_factor = size_reg_factor_init error_factor = 1 - 2 * self.deletion_mode # In deletion mode, the error has to be maximized reg_multiplicator = np.exp(np.log(size_reg_factor_dilation) / n_epoch) self.f = f self.X = X self.n_epoch = n_epoch num_samples, self.T, self.N_features = X.shape self.Y_target = f(X) # num_samples, num_time, num_state=2 if use_last_timestep_only: self.Y_target = self.Y_target[:, -1:, :] # The initial mask tensor has all coefficients set to initial_mask_coeff self.masks_tensor = initial_mask_coeff * torch.ones(size=(N_area, num_samples, self.T, self.N_features), device=self.device) # The target is the same for each mask so we simply repeat it along the first axis Y_target_group = self.Y_target.clone().detach().unsqueeze(0).repeat(N_area, 1, 1, 1) # Create a copy of the extremal tensor that is going to be trained, the optimizer and the history masks_tensor_new = self.masks_tensor.clone().detach().requires_grad_(True) # optimizer = optim.SGD([masks_tensor_new], lr=learning_rate, momentum=momentum) optimizer = optim.Adam([masks_tensor_new], lr=learning_rate) metrics = [] # Initializing the reference vector used in the regulator reg_ref = torch.ones((N_area, num_samples, self.T * self.N_features), dtype=torch.float32, device=self.device) for i, area in enumerate(self.area_list): reg_ref[i, :, :int((1 - area) * self.T * self.N_features)] = 0.0 # Run the optimization for k in tqdm(range(n_epoch)): # Measure the loop starting time t_loop = time.time() # Generate perturbed input and outputs if self.deletion_mode: X_pert = self.perturbation.apply_extremal_multiple(X=X, extremal_tensor=1 - masks_tensor_new) else: X_pert = self.perturbation.apply_extremal_multiple(X=X, extremal_tensor=masks_tensor_new) # x_pert (num_samples, T, num_feature) # f(x_pert) = (num_sample, T, num_state) # y_pert = (num_area, num_sample, T, num_state) # x_pert (T, num_feature) # f(x_pert) = (T, num_state) # Y_pert = (n_area, T, num_state) X_pert_flatten = X_pert.reshape(N_area * num_samples, self.T, self.N_features) Y_pert_flatten = f(X_pert_flatten) # (N_area * num_samples, T, num_state) if use_last_timestep_only: Y_pert = Y_pert_flatten.reshape(N_area, num_samples, 1, -1) else: Y_pert = Y_pert_flatten.reshape(N_area, num_samples, self.T, -1) # Evaluate the overall loss (error [L_e] + size regulation [L_a] + time variation regulation [L_c]) error = loss_function_multiple(Y_pert, Y_target_group) # (num_sample) masks_tensor_sorted = masks_tensor_new.reshape(N_area, num_samples, self.T * self.N_features).sort(dim=2)[0] size_reg = ((reg_ref - masks_tensor_sorted) ** 2).mean(dim=[0, 2]) masks_tensor_diff = masks_tensor_new[:, :, 1: self.T - 1, :] - masks_tensor_new[:, :, :self.T - 2, :] time_reg = (torch.abs(masks_tensor_diff)).mean(dim=[0, 2, 3]) loss = error_factor * error + reg_factor * size_reg + time_reg_factor * time_reg # Apply the gradient step optimizer.zero_grad() loss.backward(torch.ones_like(loss)) optimizer.step() # Ensures that the constraint is fulfilled masks_tensor_new.data = masks_tensor_new.data.clamp(0, 1) # Save the error and the regulator metric = torch.stack([error, size_reg, time_reg], dim=1).detach().cpu().numpy() metrics.append(metric) # Increase the regulator coefficient reg_factor *= reg_multiplicator # Measure the loop ending time t_loop = time.time() - t_loop if self.verbose and k%20==0: print( f"Epoch {k + 1}/{n_epoch}: error = {error.mean().data:.3g} ; " f"size regulator = {size_reg.mean().data:.3g} ; time regulator = {time_reg.mean().data:.3g} ;" f" time elapsed = {t_loop:.3g} s" ) print((masks_tensor_new.sum()/(N_area*num_samples)).data, X.shape[2]*X.shape[1]) # Update the mask and history tensor, print the final message self.masks_tensor = masks_tensor_new.clone().detach().requires_grad_(False) # (N_area, num_samples, T, nfeat) self.hist = torch.from_numpy(np.stack(metrics, axis=2)) t_fit = time.time() - t_fit print( f"The optimization finished: error = {error.mean().data:.3g} ; size regulator = {size_reg.mean().data:.3g} ;" f" time regulator = {time_reg.mean().data:.3g} ; time elapsed = {t_fit:.3g} s" ) # Store the individual mask coefficients in distinct mask objects for index, mask_tensor in enumerate(self.masks_tensor.unbind(dim=0)): mask = Mask( perturbation=self.perturbation, device=self.device, verbose=False, deletion_mode=self.deletion_mode ) mask.mask_tensor = mask_tensor mask.hist = self.hist mask.f = self.f mask.X = self.X mask.n_epoch = self.n_epoch mask.T, mask.N_features = self.T, self.N_features mask.Y_target = self.Y_target mask.loss_function = loss_function_multiple mask_list.append(mask) self.mask_list = mask_list def get_best_mask(self): """This method returns the mask with lowest error.""" error_list = [mask.get_error() for mask in self.mask_list] best_index = error_list.index(min(error_list)) print( f"The mask of area {self.area_list[best_index]:.2g} is" f" the best with error = {error_list[best_index]:.3g}." ) return self.mask_list[best_index] def get_extremal_mask(self, threshold): """This method returns the extremal mask for the acceptable error threshold (called epsilon in the paper).""" error_list = [mask.get_error() for mask in self.mask_list] # If the minimal error is above the threshold, the best we can do is select the mask with lowest error if min(error_list) > threshold: return self.get_best_mask() else: for id_mask, error in enumerate(error_list): if error < threshold: print( f"The mask of area {self.area_list[id_mask]:.2g} is" f" extremal with error = {error_list[id_mask]:.3g}." ) return self.mask_list[id_mask] def get_extremal_mask_multiple(self, thresholds): """This method returns the extremal mask for the acceptable error threshold (called epsilon in the paper).""" error_list = torch.stack([mask.get_error_multiple() for mask in self.mask_list], dim=1) mask_stacked = torch.stack([mask.mask_tensor for mask in self.mask_list]) num_area, num_samples, num_times, num_features = mask_stacked.shape # If the minimal error is above the threshold, the best we can do is select the mask with lowest error thres_mask = torch.min(error_list, dim=1)[0] > thresholds best_mask = torch.argmin(error_list, dim=1) #(num_sample) error_mask = (error_list < thresholds.view(-1, 1)) * torch.arange(-len(self.mask_list), 0).view(1, -1).to(self.device) first_mask = torch.argmin(error_mask, dim=1) indexes = torch.where(thres_mask, best_mask, first_mask) # (num_sample) selected_masks = torch.gather(mask_stacked, 0, indexes.view(1, num_samples, 1, 1).expand(1, num_samples, num_times, num_features)) self.mask_tensor = selected_masks.reshape(num_samples, num_times, num_features) return selected_masks.reshape(num_samples, num_times, num_features) #(num_samples, num_times, num_features) def plot_errors(self): """This method plots the error as a function of the mask size.""" sns.set() error_list = [mask.get_error() for mask in self.mask_list] plt.plot(self.area_list, error_list) plt.title("Errors for the various masks") plt.xlabel("Mask area") plt.ylabel("Error") plt.show() def get_smooth_mask(self, sigma=1): """This method smooths the mask tensor by applying a temporal Gaussian filter for each feature. Args: sigma: Width of the Gaussian filter. Returns: torch.Tensor: The smoothed mask. """ # Define the Gaussian smoothing kernel T_axis = torch.arange(1, self.T + 1, dtype=int, device=self.device) T1_tensor = T_axis.unsqueeze(1).unsqueeze(2) T2_tensor = T_axis.unsqueeze(0).unsqueeze(2) kernel_tensor = torch.exp(-1.0 * (T1_tensor - T2_tensor) ** 2 / (2.0 * sigma ** 2)) kernel_tensor = torch.divide(kernel_tensor, torch.sum(kernel_tensor, 0)) kernel_tensor = kernel_tensor.repeat(1, 1, self.N_features) # Smooth the mask tensor by applying the kernel mask_tensor_smooth = torch.einsum("sti,si->ti", kernel_tensor, self.mask_tensor) return mask_tensor_smooth def extract_submask(self, mask_tensor, ids_time, ids_feature): """This method extracts a submask specified with specified indices. Args: mask_tensor: The tensor from which data should be extracted. ids_time: List of the times that should be extracted. ids_feature: List of the features that should be extracted. Returns: torch.Tensor: Submask extracted based on the indices. """ # If no identifiers have been specified, we use the whole data if ids_time is None: ids_time = [k for k in range(self.T)] if ids_feature is None: ids_feature = [k for k in range(self.N_features)] # Extract the relevant data in the mask submask_tensor = mask_tensor.clone().detach().requires_grad_(False).cpu() submask_tensor = submask_tensor[ids_time, :] submask_tensor = submask_tensor[:, ids_feature] return submask_tensor def plot_mask(self, idx=0, ids_time=None, ids_feature=None, smooth: bool = False, sigma: float = 1.0): """This method plots (part of) the mask. Args: ids_time: List of the times that should appear on the plot. ids_feature: List of the features that should appear on the plot. smooth: True if the mask should be smoothed before plotting. sigma: Width of the smoothing Gaussian kernel. Returns: None """ sns.set() # Smooth the mask if required if smooth: mask_tensor = self.get_smooth_mask(sigma) else: mask_tensor = self.mask_tensor # Extract submask from ids submask_tensor_np = self.extract_submask(mask_tensor[idx], ids_time, ids_feature).numpy() df = pd.DataFrame(data=np.transpose(submask_tensor_np), index=ids_feature, columns=ids_time) # Generate heatmap plot color_map = sns.diverging_palette(10, 133, as_cmap=True) heat_map = sns.heatmap(data=df, cmap=color_map, cbar_kws={"label": "Mask"}, vmin=0, vmax=1) plt.xlabel("Time") plt.ylabel("Feature Number") plt.title("Mask coefficients over time") plt.show()