aiops/ContraLSP/utils/tools.py (132 lines of code) (raw):
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm, colors
import seaborn as sns
from sklearn import metrics
import pickle as pkl
import torch
import pandas as pd
from sklearn.metrics import auc, precision_recall_curve, roc_auc_score
from utils.metrics import get_entropy_array, get_information_array
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('max_colwidth', 500)
def process_results_by_file(CV, explainer_list, path='./results.csv'):
pd.options.display.float_format = '{:.2f}'.format
metrics = np.zeros((4, len(explainer_list), CV))
results_df = pd.DataFrame(columns=["AUP", "AUP std", "AUR", "AUR std", "Info", "Info std", "Entr", "Entr std"])
data = pd.read_csv(path)
for cv in range(CV):
for e, explainer in enumerate(explainer_list):
metrics[0, e, cv] = data[data.Fold==cv][data.Explainer==explainer].AUP.values[0]
metrics[1, e, cv] = data[data.Fold==cv][data.Explainer==explainer].AUR.values[0]
metrics[2, e, cv] = data[data.Fold==cv][data.Explainer==explainer].Information.values[0]
metrics[3, e, cv] = data[data.Fold==cv][data.Explainer==explainer].Entropy.values[0]
for e, explainer in enumerate(explainer_list):
aup_avg, aup_std = np.mean(metrics[0, e, :]), np.std(metrics[0, e, :])
aur_avg, aur_std = np.mean(metrics[1, e, :]), np.std(metrics[1, e, :])
im_avg, im_std = np.mean(metrics[2, e, :])/10000, np.std(metrics[2, e, :])/10000
sm_avg, sm_std = np.mean(metrics[3, e, :])/1000, np.std(metrics[3, e, :])/1000
results_df.loc[explainer] = [aup_avg, aup_std, aur_avg, aur_std,
im_avg, im_std, sm_avg, sm_std]
print(path)
print(results_df)
def process_results(CV, explainer_list, path="experiments/results/rare_time"):
pd.options.display.float_format = '{:.2f}'.format
metrics = np.zeros((6, len(explainer_list), CV))
results_df = pd.DataFrame(columns=["AUP", "AUP std", "AUR", "AUR std", "AUROC", "AUROC std",
"AUPRC", "AUPRC std", "Info", "Info std", "Entr", "Entr std"])
for cv in range(CV):
with open(path + f"true_saliency_{cv}.pkl", "rb") as f:
true_saliency = pkl.load(f).cpu().numpy()
for e, explainer in enumerate(explainer_list):
with open(path + f"{explainer}_saliency_{cv}.pkl", "rb") as f:
pred_saliency = pkl.load(f)
if torch.is_tensor(pred_saliency):
pred_saliency = pred_saliency.cpu().numpy()
prec, rec, thres = precision_recall_curve(true_saliency.flatten(), pred_saliency.flatten())
metrics[0, e, cv] = auc(thres, prec[1:])
metrics[1, e, cv] = auc(thres, rec[1:])
auc_score = roc_auc_score(true_saliency.flatten(), pred_saliency.flatten())
metrics[2, e, cv] = auc_score
auprc_score = auc(rec, prec) if rec.shape[0] > 1 else -1
metrics[3, e, cv] = auprc_score
# Normalize the saliency map:
pred_saliency -= pred_saliency.min(axis=(1, 2), keepdims=True)
pred_saliency /= pred_saliency.max(axis=(1, 2), keepdims=True)
sub_saliency = pred_saliency[true_saliency != 0] # This is the saliency scores for each truly salient input
metrics[4, e, cv] = get_information_array(sub_saliency, eps=1.0e-5)
metrics[5, e, cv] = get_entropy_array(sub_saliency, eps=1.0e-5)
for e, explainer in enumerate(explainer_list):
aup_avg, aup_std = np.mean(metrics[0, e, :]), np.std(metrics[0, e, :])
aur_avg, aur_std = np.mean(metrics[1, e, :]), np.std(metrics[1, e, :])
auroc_avg, auroc_std = np.mean(metrics[2, e, :]), np.std(metrics[2, e, :])
auprc_avg, auprc_std = np.mean(metrics[3, e, :]), np.std(metrics[3, e, :])
im_avg, im_std = np.mean(metrics[4, e, :])/10000, np.std(metrics[4, e, :])/10000
sm_avg, sm_std = np.mean(metrics[5, e, :])/100, np.std(metrics[5, e, :])/100
results_df.loc[explainer] = [aup_avg, aup_std, aur_avg, aur_std,
auroc_avg, auroc_std, auprc_avg, auprc_std,
im_avg, im_std, sm_avg, sm_std]
print(path)
print(results_df)
def print_results(mask_label, true_label):
if torch.is_tensor(mask_label):
mask_label = mask_label.cpu().numpy()
if torch.is_tensor(true_label):
true_label = true_label.cpu().numpy()
mask_prec, mask_rec, mask_thres = metrics.precision_recall_curve(
true_label.flatten().astype(int), mask_label.flatten())
print(f"Saliency AUROC: {metrics.roc_auc_score(true_label.flatten(), mask_label.flatten())}")
print(f"Saliency AUPRC: {metrics.auc(mask_rec, mask_prec)}")
print(f"Saliency AUP: {metrics.auc(mask_thres, mask_prec[:-1])}")
print(f"Saliency AUR: {metrics.auc(mask_thres, mask_rec[:-1])}")
return metrics
def plot_example_box(input_arrays, cur_id=0, save_location=None, k=8):
sns.set()
fig, ax = plt.subplots()
plt.axis("off")
input_array = input_arrays[cur_id].T
# color_map = sns.diverging_palette(10, 133, as_cmap=True)
# color_map = cm.Blues
# norm = colors.BoundaryNorm([0,0.5,1], color_map.N)
cmap1 = cm.get_cmap('YlGn', k)
cmap1 = cmap1(np.linspace(0, 1, k))
from matplotlib.colors import ListedColormap
new_cmap = ListedColormap(cmap1)
# sns.heatmap(data=input_array, cmap=color_map, cbar_kws={"label": "Mask"}, vmin=0, vmax=1)
ax.imshow(input_array, interpolation="nearest",cmap=new_cmap)#"gray" , norm=norm
plt.gca().set_axis_off()
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
# plt.figure(figsize=(12, 2))
plt.margins(0, 0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
if save_location:
plt.savefig(str(save_location), bbox_inches="tight", pad_inches=0,dpi=600)
else:
plt.show()
plt.close()
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False, delta=0, path='checkpoint.pt', trace_func=print):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
path (str): Path for the checkpoint to be saved to.
Default: 'checkpoint.pt'
trace_func (function): trace print function.
Default: print
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
self.path = path
self.trace_func = trace_func
def __call__(self, val_loss):
score = -val_loss
if self.best_score is None:
self.best_score = score
elif score < self.best_score + self.delta:
self.counter += 1
if self.verbose:
self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.counter = 0
def save_checkpoint(self, val_loss, model):
'''Saves model when validation loss decrease.'''
if self.verbose:
self.trace_func(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(), self.path)
self.val_loss_min = val_loss