aiops/ContraLSP/utils/tools.py (132 lines of code) (raw):

import numpy as np import matplotlib.pyplot as plt from matplotlib import cm, colors import seaborn as sns from sklearn import metrics import pickle as pkl import torch import pandas as pd from sklearn.metrics import auc, precision_recall_curve, roc_auc_score from utils.metrics import get_entropy_array, get_information_array pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) pd.set_option('max_colwidth', 500) def process_results_by_file(CV, explainer_list, path='./results.csv'): pd.options.display.float_format = '{:.2f}'.format metrics = np.zeros((4, len(explainer_list), CV)) results_df = pd.DataFrame(columns=["AUP", "AUP std", "AUR", "AUR std", "Info", "Info std", "Entr", "Entr std"]) data = pd.read_csv(path) for cv in range(CV): for e, explainer in enumerate(explainer_list): metrics[0, e, cv] = data[data.Fold==cv][data.Explainer==explainer].AUP.values[0] metrics[1, e, cv] = data[data.Fold==cv][data.Explainer==explainer].AUR.values[0] metrics[2, e, cv] = data[data.Fold==cv][data.Explainer==explainer].Information.values[0] metrics[3, e, cv] = data[data.Fold==cv][data.Explainer==explainer].Entropy.values[0] for e, explainer in enumerate(explainer_list): aup_avg, aup_std = np.mean(metrics[0, e, :]), np.std(metrics[0, e, :]) aur_avg, aur_std = np.mean(metrics[1, e, :]), np.std(metrics[1, e, :]) im_avg, im_std = np.mean(metrics[2, e, :])/10000, np.std(metrics[2, e, :])/10000 sm_avg, sm_std = np.mean(metrics[3, e, :])/1000, np.std(metrics[3, e, :])/1000 results_df.loc[explainer] = [aup_avg, aup_std, aur_avg, aur_std, im_avg, im_std, sm_avg, sm_std] print(path) print(results_df) def process_results(CV, explainer_list, path="experiments/results/rare_time"): pd.options.display.float_format = '{:.2f}'.format metrics = np.zeros((6, len(explainer_list), CV)) results_df = pd.DataFrame(columns=["AUP", "AUP std", "AUR", "AUR std", "AUROC", "AUROC std", "AUPRC", "AUPRC std", "Info", "Info std", "Entr", "Entr std"]) for cv in range(CV): with open(path + f"true_saliency_{cv}.pkl", "rb") as f: true_saliency = pkl.load(f).cpu().numpy() for e, explainer in enumerate(explainer_list): with open(path + f"{explainer}_saliency_{cv}.pkl", "rb") as f: pred_saliency = pkl.load(f) if torch.is_tensor(pred_saliency): pred_saliency = pred_saliency.cpu().numpy() prec, rec, thres = precision_recall_curve(true_saliency.flatten(), pred_saliency.flatten()) metrics[0, e, cv] = auc(thres, prec[1:]) metrics[1, e, cv] = auc(thres, rec[1:]) auc_score = roc_auc_score(true_saliency.flatten(), pred_saliency.flatten()) metrics[2, e, cv] = auc_score auprc_score = auc(rec, prec) if rec.shape[0] > 1 else -1 metrics[3, e, cv] = auprc_score # Normalize the saliency map: pred_saliency -= pred_saliency.min(axis=(1, 2), keepdims=True) pred_saliency /= pred_saliency.max(axis=(1, 2), keepdims=True) sub_saliency = pred_saliency[true_saliency != 0] # This is the saliency scores for each truly salient input metrics[4, e, cv] = get_information_array(sub_saliency, eps=1.0e-5) metrics[5, e, cv] = get_entropy_array(sub_saliency, eps=1.0e-5) for e, explainer in enumerate(explainer_list): aup_avg, aup_std = np.mean(metrics[0, e, :]), np.std(metrics[0, e, :]) aur_avg, aur_std = np.mean(metrics[1, e, :]), np.std(metrics[1, e, :]) auroc_avg, auroc_std = np.mean(metrics[2, e, :]), np.std(metrics[2, e, :]) auprc_avg, auprc_std = np.mean(metrics[3, e, :]), np.std(metrics[3, e, :]) im_avg, im_std = np.mean(metrics[4, e, :])/10000, np.std(metrics[4, e, :])/10000 sm_avg, sm_std = np.mean(metrics[5, e, :])/100, np.std(metrics[5, e, :])/100 results_df.loc[explainer] = [aup_avg, aup_std, aur_avg, aur_std, auroc_avg, auroc_std, auprc_avg, auprc_std, im_avg, im_std, sm_avg, sm_std] print(path) print(results_df) def print_results(mask_label, true_label): if torch.is_tensor(mask_label): mask_label = mask_label.cpu().numpy() if torch.is_tensor(true_label): true_label = true_label.cpu().numpy() mask_prec, mask_rec, mask_thres = metrics.precision_recall_curve( true_label.flatten().astype(int), mask_label.flatten()) print(f"Saliency AUROC: {metrics.roc_auc_score(true_label.flatten(), mask_label.flatten())}") print(f"Saliency AUPRC: {metrics.auc(mask_rec, mask_prec)}") print(f"Saliency AUP: {metrics.auc(mask_thres, mask_prec[:-1])}") print(f"Saliency AUR: {metrics.auc(mask_thres, mask_rec[:-1])}") return metrics def plot_example_box(input_arrays, cur_id=0, save_location=None, k=8): sns.set() fig, ax = plt.subplots() plt.axis("off") input_array = input_arrays[cur_id].T # color_map = sns.diverging_palette(10, 133, as_cmap=True) # color_map = cm.Blues # norm = colors.BoundaryNorm([0,0.5,1], color_map.N) cmap1 = cm.get_cmap('YlGn', k) cmap1 = cmap1(np.linspace(0, 1, k)) from matplotlib.colors import ListedColormap new_cmap = ListedColormap(cmap1) # sns.heatmap(data=input_array, cmap=color_map, cbar_kws={"label": "Mask"}, vmin=0, vmax=1) ax.imshow(input_array, interpolation="nearest",cmap=new_cmap)#"gray" , norm=norm plt.gca().set_axis_off() plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) # plt.figure(figsize=(12, 2)) plt.margins(0, 0) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) if save_location: plt.savefig(str(save_location), bbox_inches="tight", pad_inches=0,dpi=600) else: plt.show() plt.close() class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__(self, patience=7, verbose=False, delta=0, path='checkpoint.pt', trace_func=print): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False delta (float): Minimum change in the monitored quantity to qualify as an improvement. Default: 0 path (str): Path for the checkpoint to be saved to. Default: 'checkpoint.pt' trace_func (function): trace print function. Default: print """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta self.path = path self.trace_func = trace_func def __call__(self, val_loss): score = -val_loss if self.best_score is None: self.best_score = score elif score < self.best_score + self.delta: self.counter += 1 if self.verbose: self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True else: self.best_score = score self.counter = 0 def save_checkpoint(self, val_loss, model): '''Saves model when validation loss decrease.''' if self.verbose: self.trace_func(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') torch.save(model.state_dict(), self.path) self.val_loss_min = val_loss