aiops/Pathformer_ICLR2024/exp/exp_main.py (247 lines of code) (raw):

from data_provider.data_factory import data_provider from exp.exp_basic import Exp_Basic from models import PathFormer from utils.tools import EarlyStopping, adjust_learning_rate, visual, test_params_flop from utils.metrics import metric import numpy as np import torch import torch.nn as nn from torch import optim from torch.optim import lr_scheduler import os import time import warnings import matplotlib.pyplot as plt import numpy as np warnings.filterwarnings('ignore') class Exp_Main(Exp_Basic): def __init__(self, args): super(Exp_Main, self).__init__(args) def _build_model(self): model_dict = { 'PathFormer': PathFormer, } model = model_dict[self.args.model].Model(self.args).float() if self.args.use_multi_gpu and self.args.use_gpu: model = nn.DataParallel(model, device_ids=self.args.device_ids) return model def _get_data(self, flag): data_set, data_loader = data_provider(self.args, flag) return data_set, data_loader def _select_optimizer(self): model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate) return model_optim def _select_criterion(self): criterion = nn.L1Loss() return criterion def vali(self, vali_data, vali_loader, criterion): total_loss = [] self.model.eval() with torch.no_grad(): for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(vali_loader): batch_x = batch_x.float().to(self.device) batch_y = batch_y.float() batch_x_mark = batch_x_mark.float().to(self.device) batch_y_mark = batch_y_mark.float().to(self.device) # encoder - decoder if self.args.use_amp: with torch.cuda.amp.autocast(): if self.args.model=='PathFormer': outputs, balance_loss = self.model(batch_x) else: outputs = self.model(batch_x) else: if self.args.model=='PathFormer': outputs, balance_loss = self.model(batch_x) else: outputs = self.model(batch_x) f_dim = -1 if self.args.features == 'MS' else 0 outputs = outputs[:, -self.args.pred_len:, f_dim:] batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) pred = outputs.detach().cpu() true = batch_y.detach().cpu() loss = criterion(pred, true) total_loss.append(loss) total_loss = np.average(total_loss) self.model.train() return total_loss def train(self, setting): train_data, train_loader = self._get_data(flag='train') vali_data, vali_loader = self._get_data(flag='val') test_data, test_loader = self._get_data(flag='test') path = os.path.join(self.args.checkpoints, setting) if not os.path.exists(path): os.makedirs(path) total_num = sum(p.numel() for p in self.model.parameters()) time_now = time.time() train_steps = len(train_loader) early_stopping = EarlyStopping(patience=self.args.patience, verbose=True) model_optim = self._select_optimizer() criterion = self._select_criterion() if self.args.use_amp: scaler = torch.cuda.amp.GradScaler() scheduler = lr_scheduler.OneCycleLR(optimizer=model_optim, steps_per_epoch=train_steps, pct_start=self.args.pct_start, epochs=self.args.train_epochs, max_lr=self.args.learning_rate) for epoch in range(self.args.train_epochs): iter_count = 0 train_loss = [] self.model.train() epoch_time = time.time() for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader): iter_count += 1 model_optim.zero_grad() batch_x = batch_x.float().to(self.device) batch_y = batch_y.float().to(self.device) batch_x_mark = batch_x_mark.float().to(self.device) batch_y_mark = batch_y_mark.float().to(self.device) # encoder - decoder if self.args.use_amp: with torch.cuda.amp.autocast(): if self.args.model=='PathFormer': outputs, balance_loss = self.model(batch_x) else: outputs = self.model(batch_x) f_dim = -1 if self.args.features == 'MS' else 0 outputs = outputs[:, -self.args.pred_len:, f_dim:] batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) loss = criterion(outputs, batch_y) train_loss.append(loss.item()) else: if self.args.model == 'PathFormer': outputs, balance_loss = self.model(batch_x) else: outputs = self.model(batch_x) f_dim = -1 if self.args.features == 'MS' else 0 outputs = outputs[:, -self.args.pred_len:, f_dim:] batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) loss = criterion(outputs, batch_y) if self.args.model=="PathFormer": loss = loss + balance_loss train_loss.append(loss.item()) if (i + 1) % 100 == 0: print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item())) speed = (time.time() - time_now) / iter_count left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i) print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time)) iter_count = 0 time_now = time.time() if self.args.use_amp: scaler.scale(loss).backward() scaler.step(model_optim) scaler.update() else: loss.backward() model_optim.step() if self.args.lradj == 'TST': adjust_learning_rate(model_optim, scheduler, epoch + 1, self.args, printout=False) scheduler.step() print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time)) train_loss = np.average(train_loss) vali_loss = self.vali(vali_data, vali_loader, criterion) test_loss = self.vali(test_data, test_loader, criterion) print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format( epoch + 1, train_steps, train_loss, vali_loss, test_loss)) early_stopping(vali_loss, self.model, path) if early_stopping.early_stop: print("Early stopping") break if self.args.lradj != 'TST': adjust_learning_rate(model_optim, scheduler, epoch + 1, self.args) else: print('Updating learning rate to {}'.format(scheduler.get_last_lr()[0])) best_model_path = path + '/' + 'checkpoint.pth' self.model.load_state_dict(torch.load(best_model_path)) return self.model def test(self, setting, test=0): test_data, test_loader = self._get_data(flag='test') if test: print('loading model') self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth'))) preds = [] trues = [] inputx = [] folder_path = './test_results/' + setting + '/' if not os.path.exists(folder_path): os.makedirs(folder_path) self.model.eval() with torch.no_grad(): for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(test_loader): batch_x = batch_x.float().to(self.device) batch_y = batch_y.float().to(self.device) batch_x_mark = batch_x_mark.float().to(self.device) batch_y_mark = batch_y_mark.float().to(self.device) if self.args.use_amp: with torch.cuda.amp.autocast(): if self.args.model=='PathFormer': outputs, balance_loss = self.model(batch_x) else: outputs = self.model(batch_x) else: if self.args.model == 'PathFormer': outputs, balance_loss = self.model(batch_x) else: outputs = self.model(batch_x) f_dim = -1 if self.args.features == 'MS' else 0 outputs = outputs[:, -self.args.pred_len:, f_dim:] batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) outputs = outputs.detach().cpu().numpy() batch_y = batch_y.detach().cpu().numpy() pred = outputs # outputs.detach().cpu().numpy() # .squeeze() true = batch_y # batch_y.detach().cpu().numpy() # .squeeze() preds.append(pred) trues.append(true) inputx.append(batch_x.detach().cpu().numpy()) if i % 20 == 0: input = batch_x.detach().cpu().numpy() gt = np.concatenate((input[0, :, -1], true[0, :, -1]), axis=0) pd = np.concatenate((input[0, :, -1], pred[0, :, -1]), axis=0) visual(gt, pd, os.path.join(folder_path, str(i) + '.pdf')) if self.args.test_flop: test_params_flop((batch_x.shape[1], batch_x.shape[2])) exit() preds = np.array(preds) trues = np.array(trues) inputx = np.array(inputx) preds = preds.reshape(-1, preds.shape[-2], preds.shape[-1]) trues = trues.reshape(-1, trues.shape[-2], trues.shape[-1]) inputx = inputx.reshape(-1, inputx.shape[-2], inputx.shape[-1]) mae, mse, rmse, mape, mspe, rse, corr = metric(preds, trues) print('mse:{}, mae:{}, rse:{}'.format(mse, mae, rse)) f = open("result.txt", 'a') f.write(setting + " \n") f.write('mse:{}, mae:{}, rse:{}'.format(mse, mae, rse)) f.write('\n') f.write('\n') f.close() return def predict(self, setting, load=False): pred_data, pred_loader = self._get_data(flag='pred') if load: path = os.path.join(self.args.checkpoints, setting) best_model_path = path + '/' + 'checkpoint.pth' self.model.load_state_dict(torch.load(best_model_path)) preds = [] self.model.eval() with torch.no_grad(): for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(pred_loader): batch_x = batch_x.float().to(self.device) batch_y = batch_y.float() batch_x_mark = batch_x_mark.float().to(self.device) batch_y_mark = batch_y_mark.float().to(self.device) # encoder - decoder if self.args.use_amp: with torch.cuda.amp.autocast(): if self.args.model=='PathFormer': outputs, a_loss = self.model(batch_x) else: outputs = self.model(batch_x) else: if self.args.model == 'PathFormer': outputs, a_loss = self.model(batch_x) else: outputs = self.model(batch_x) pred = outputs.detach().cpu().numpy() # .squeeze() preds.append(pred) preds = np.array(preds) preds = preds.reshape(-1, preds.shape[-2], preds.shape[-1]) # result save # folder_path = './results/' + setting + '/' # if not os.path.exists(folder_path): # os.makedirs(folder_path) # # np.save(folder_path + 'real_prediction.npy', preds) return