aiops/Pathformer_ICLR2024/exp/exp_main.py (247 lines of code) (raw):
from data_provider.data_factory import data_provider
from exp.exp_basic import Exp_Basic
from models import PathFormer
from utils.tools import EarlyStopping, adjust_learning_rate, visual, test_params_flop
from utils.metrics import metric
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from torch.optim import lr_scheduler
import os
import time
import warnings
import matplotlib.pyplot as plt
import numpy as np
warnings.filterwarnings('ignore')
class Exp_Main(Exp_Basic):
def __init__(self, args):
super(Exp_Main, self).__init__(args)
def _build_model(self):
model_dict = {
'PathFormer': PathFormer,
}
model = model_dict[self.args.model].Model(self.args).float()
if self.args.use_multi_gpu and self.args.use_gpu:
model = nn.DataParallel(model, device_ids=self.args.device_ids)
return model
def _get_data(self, flag):
data_set, data_loader = data_provider(self.args, flag)
return data_set, data_loader
def _select_optimizer(self):
model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate)
return model_optim
def _select_criterion(self):
criterion = nn.L1Loss()
return criterion
def vali(self, vali_data, vali_loader, criterion):
total_loss = []
self.model.eval()
with torch.no_grad():
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(vali_loader):
batch_x = batch_x.float().to(self.device)
batch_y = batch_y.float()
batch_x_mark = batch_x_mark.float().to(self.device)
batch_y_mark = batch_y_mark.float().to(self.device)
# encoder - decoder
if self.args.use_amp:
with torch.cuda.amp.autocast():
if self.args.model=='PathFormer':
outputs, balance_loss = self.model(batch_x)
else:
outputs = self.model(batch_x)
else:
if self.args.model=='PathFormer':
outputs, balance_loss = self.model(batch_x)
else:
outputs = self.model(batch_x)
f_dim = -1 if self.args.features == 'MS' else 0
outputs = outputs[:, -self.args.pred_len:, f_dim:]
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
pred = outputs.detach().cpu()
true = batch_y.detach().cpu()
loss = criterion(pred, true)
total_loss.append(loss)
total_loss = np.average(total_loss)
self.model.train()
return total_loss
def train(self, setting):
train_data, train_loader = self._get_data(flag='train')
vali_data, vali_loader = self._get_data(flag='val')
test_data, test_loader = self._get_data(flag='test')
path = os.path.join(self.args.checkpoints, setting)
if not os.path.exists(path):
os.makedirs(path)
total_num = sum(p.numel() for p in self.model.parameters())
time_now = time.time()
train_steps = len(train_loader)
early_stopping = EarlyStopping(patience=self.args.patience, verbose=True)
model_optim = self._select_optimizer()
criterion = self._select_criterion()
if self.args.use_amp:
scaler = torch.cuda.amp.GradScaler()
scheduler = lr_scheduler.OneCycleLR(optimizer=model_optim,
steps_per_epoch=train_steps,
pct_start=self.args.pct_start,
epochs=self.args.train_epochs,
max_lr=self.args.learning_rate)
for epoch in range(self.args.train_epochs):
iter_count = 0
train_loss = []
self.model.train()
epoch_time = time.time()
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader):
iter_count += 1
model_optim.zero_grad()
batch_x = batch_x.float().to(self.device)
batch_y = batch_y.float().to(self.device)
batch_x_mark = batch_x_mark.float().to(self.device)
batch_y_mark = batch_y_mark.float().to(self.device)
# encoder - decoder
if self.args.use_amp:
with torch.cuda.amp.autocast():
if self.args.model=='PathFormer':
outputs, balance_loss = self.model(batch_x)
else:
outputs = self.model(batch_x)
f_dim = -1 if self.args.features == 'MS' else 0
outputs = outputs[:, -self.args.pred_len:, f_dim:]
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
loss = criterion(outputs, batch_y)
train_loss.append(loss.item())
else:
if self.args.model == 'PathFormer':
outputs, balance_loss = self.model(batch_x)
else:
outputs = self.model(batch_x)
f_dim = -1 if self.args.features == 'MS' else 0
outputs = outputs[:, -self.args.pred_len:, f_dim:]
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
loss = criterion(outputs, batch_y)
if self.args.model=="PathFormer":
loss = loss + balance_loss
train_loss.append(loss.item())
if (i + 1) % 100 == 0:
print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
speed = (time.time() - time_now) / iter_count
left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i)
print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
iter_count = 0
time_now = time.time()
if self.args.use_amp:
scaler.scale(loss).backward()
scaler.step(model_optim)
scaler.update()
else:
loss.backward()
model_optim.step()
if self.args.lradj == 'TST':
adjust_learning_rate(model_optim, scheduler, epoch + 1, self.args, printout=False)
scheduler.step()
print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
train_loss = np.average(train_loss)
vali_loss = self.vali(vali_data, vali_loader, criterion)
test_loss = self.vali(test_data, test_loader, criterion)
print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format(
epoch + 1, train_steps, train_loss, vali_loss, test_loss))
early_stopping(vali_loss, self.model, path)
if early_stopping.early_stop:
print("Early stopping")
break
if self.args.lradj != 'TST':
adjust_learning_rate(model_optim, scheduler, epoch + 1, self.args)
else:
print('Updating learning rate to {}'.format(scheduler.get_last_lr()[0]))
best_model_path = path + '/' + 'checkpoint.pth'
self.model.load_state_dict(torch.load(best_model_path))
return self.model
def test(self, setting, test=0):
test_data, test_loader = self._get_data(flag='test')
if test:
print('loading model')
self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth')))
preds = []
trues = []
inputx = []
folder_path = './test_results/' + setting + '/'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
self.model.eval()
with torch.no_grad():
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(test_loader):
batch_x = batch_x.float().to(self.device)
batch_y = batch_y.float().to(self.device)
batch_x_mark = batch_x_mark.float().to(self.device)
batch_y_mark = batch_y_mark.float().to(self.device)
if self.args.use_amp:
with torch.cuda.amp.autocast():
if self.args.model=='PathFormer':
outputs, balance_loss = self.model(batch_x)
else:
outputs = self.model(batch_x)
else:
if self.args.model == 'PathFormer':
outputs, balance_loss = self.model(batch_x)
else:
outputs = self.model(batch_x)
f_dim = -1 if self.args.features == 'MS' else 0
outputs = outputs[:, -self.args.pred_len:, f_dim:]
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
outputs = outputs.detach().cpu().numpy()
batch_y = batch_y.detach().cpu().numpy()
pred = outputs # outputs.detach().cpu().numpy() # .squeeze()
true = batch_y # batch_y.detach().cpu().numpy() # .squeeze()
preds.append(pred)
trues.append(true)
inputx.append(batch_x.detach().cpu().numpy())
if i % 20 == 0:
input = batch_x.detach().cpu().numpy()
gt = np.concatenate((input[0, :, -1], true[0, :, -1]), axis=0)
pd = np.concatenate((input[0, :, -1], pred[0, :, -1]), axis=0)
visual(gt, pd, os.path.join(folder_path, str(i) + '.pdf'))
if self.args.test_flop:
test_params_flop((batch_x.shape[1], batch_x.shape[2]))
exit()
preds = np.array(preds)
trues = np.array(trues)
inputx = np.array(inputx)
preds = preds.reshape(-1, preds.shape[-2], preds.shape[-1])
trues = trues.reshape(-1, trues.shape[-2], trues.shape[-1])
inputx = inputx.reshape(-1, inputx.shape[-2], inputx.shape[-1])
mae, mse, rmse, mape, mspe, rse, corr = metric(preds, trues)
print('mse:{}, mae:{}, rse:{}'.format(mse, mae, rse))
f = open("result.txt", 'a')
f.write(setting + " \n")
f.write('mse:{}, mae:{}, rse:{}'.format(mse, mae, rse))
f.write('\n')
f.write('\n')
f.close()
return
def predict(self, setting, load=False):
pred_data, pred_loader = self._get_data(flag='pred')
if load:
path = os.path.join(self.args.checkpoints, setting)
best_model_path = path + '/' + 'checkpoint.pth'
self.model.load_state_dict(torch.load(best_model_path))
preds = []
self.model.eval()
with torch.no_grad():
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(pred_loader):
batch_x = batch_x.float().to(self.device)
batch_y = batch_y.float()
batch_x_mark = batch_x_mark.float().to(self.device)
batch_y_mark = batch_y_mark.float().to(self.device)
# encoder - decoder
if self.args.use_amp:
with torch.cuda.amp.autocast():
if self.args.model=='PathFormer':
outputs, a_loss = self.model(batch_x)
else:
outputs = self.model(batch_x)
else:
if self.args.model == 'PathFormer':
outputs, a_loss = self.model(batch_x)
else:
outputs = self.model(batch_x)
pred = outputs.detach().cpu().numpy() # .squeeze()
preds.append(pred)
preds = np.array(preds)
preds = preds.reshape(-1, preds.shape[-2], preds.shape[-1])
# result save
# folder_path = './results/' + setting + '/'
# if not os.path.exists(folder_path):
# os.makedirs(folder_path)
#
# np.save(folder_path + 'real_prediction.npy', preds)
return