workload_generator/generate_megatron_workload.py [157:179]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            self.workload.append(
                LogItem(
                    comm_type=CommType.broadcast,
                    comm_group=CommGroup.tp_group,
                    comm_group_size=self.args.tensor_model_parallel_size,
                    msg_size=5 * 8,
                    stage="forward_step",
                    src=0,
                )
            )
            self.workload.append(
                LogItem(
                    comm_type=CommType.broadcast,
                    comm_group=CommGroup.tp_group,
                    comm_group_size=self.args.tensor_model_parallel_size,
                    msg_size=8 * (args.world_size + args.seq_length * args.micro_batch),
                    stage="forward_step",
                    src=0,
                )
            )

            # for item in forward_comm:
            self.workload.extend(self.model.forward())
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



workload_generator/generate_megatron_workload.py [333:353]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            self.workload.append(
                LogItem(
                    comm_type=CommType.broadcast,
                    comm_group=CommGroup.tp_group,
                    comm_group_size=self.args.tensor_model_parallel_size,
                    msg_size=5 * 8,
                    stage="forward_step",
                    src=0,
                )
            )
            self.workload.append(
                LogItem(
                    comm_type=CommType.broadcast,
                    comm_group=CommGroup.tp_group,
                    comm_group_size=self.args.tensor_model_parallel_size,
                    msg_size=8 * (args.world_size + args.seq_length * args.micro_batch),
                    stage="forward_step",
                    src=0,
                )
            )
        self.workload.extend(self.model.forward())
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



