def dump_file()

in workload_generator/AIOB_simAI_workload_generator.py [0:0]


    def dump_file(self, filename):
        filename = filename + ".txt"

        pp_comm_value = 2 * self.args.micro_batch * self.args.seq_length * self.args.hidden_size
        if self.args.enable_sequence_parallel:
            pp_comm_value /= self.args.tensor_model_parallel_size

        pp_comm = (
            f"pp_comm: {pp_comm_value}"
            if self.args.pipeline_model_parallel != 1
            else "pp_comm: 0"
        )
        with open(filename, "w") as f:
            f.write((
                f"HYBRID_TRANSFORMER_FWD_IN_BCKWD model_parallel_NPU_group: {self.args.tensor_model_parallel_size} "
                f"ep: {self.args.expert_model_parallel_size} "
                f"pp: {self.args.pipeline_model_parallel} "
                f"vpp: {self.args.num_layers} "
                f"ga: {self.ga_num} all_gpus: {self.args.world_size} "
                f"checkpoints: 0 checkpoint_initiates: 0 "
            ) + pp_comm + "\n")

            f.write(str(len(self.workload)) + "\n")
            for item in self.workload:
                f.write(
                    "\t".join([str(getattr(item, k)) for k in item.__dict__.keys()])
                    + "\n"
                )