holo-llm/main.py (143 lines of code) (raw):

from typing import Any, List from langchain.document_loaders.csv_loader import CSVLoader from langchain.embeddings import ModelScopeEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Hologres import requests from typing import List import os import json import time import argparse class LLMChatbot: def __init__(self, config,clear_db) -> None: self.config = config self.embeddings = ModelScopeEmbeddings( model_id=self.config['embedding']['model_id']) self.vectorstore = self.connect_hologres(clear_db) def connect_hologres(self,clear_db): print("start connecting") HOLO_ENDPOINT = self.config['holo_config']['HOLO_ENDPOINT'] HOLO_PORT = self.config['holo_config']['HOLO_PORT'] HOLO_DATABASE = self.config['holo_config']['HOLO_DATABASE'] HOLO_USER = self.config['holo_config']['HOLO_USER'] HOLO_PASSWORD = self.config['holo_config']['HOLO_PASSWORD'] connection_string = Hologres.connection_string_from_db_params( HOLO_ENDPOINT, int(HOLO_PORT), HOLO_DATABASE, HOLO_USER, HOLO_PASSWORD) vectorstore = Hologres( connection_string=connection_string, embedding_function=self.embeddings, ndims=768, table_name='langchain_embedding', pre_delete_table=clear_db) return vectorstore def load_db(self, files: List[str]) -> None: # read docs documents = [] for fname in files: loader = CSVLoader(fname) documents += loader.load() # split docs text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=100) documents = text_splitter.split_documents(documents) # store embedding in vectorstore start_time = time.time() self.vectorstore.add_documents(documents) end_time = time.time() print( "Store embedding into Hologres Success.Cost Time: {:.2f}s".format( end_time - start_time)) def generate_context(self, question: str,max_context_length: int) -> str: docs = self.vectorstore.similarity_search( question, k=self.config['query_topk']) # Limit the total length of context current_context_length = 0 ret = [] for doc in docs: if len(doc.page_content) + \ current_context_length > max_context_length: continue current_context_length += len(doc.page_content) ret.append(doc.page_content) return ret def post_requests_to_llama2_eas(self, query_prompt: str) -> str: url = self.config['eas_config']['url'] token = self.config['eas_config']['token'] headers = { "Authorization": token, 'Accept': "*/*", "Content-Type": "application/x-www-form-urlencoded;charset=utf-8" } response = requests.post( url=url, data=query_prompt.encode('utf8'), headers=headers, timeout=60000, ) if response.status_code == 200: return response.text else: return "" def query(self, question: str, use_holo: bool = True) -> str: message_list = self.generate_context(question,1800) context = '' if use_holo: for i in range(len(message_list)): pos = message_list[i].find('content:') context = context + message_list[i][pos + 9:-1] prompt_template = self.config['prompt_template'] prompt_query = prompt_template.format( context=context, question=question) start_time = time.time() answer = self.post_requests_to_llama2_eas(prompt_query) end_time = time.time() print( "Get response from PAI-EAS Success.Cost Time: {:.2f}s".format( end_time - start_time)) if len(answer) == 0: return "HTTP request to PAI EAS failed." pos = answer.find('Helpful answer:') if(pos != -1): answer = answer[pos + 16 : -1] answer = answer.replace('<br/>','') return answer if __name__ == '__main__': parser = argparse.ArgumentParser( prog='chatbot', description='holo chatbot command line interface') parser.add_argument('-l', '--load', action='store_true', help='generate embeddings and update the vector database.') parser.add_argument('-f', '--files', nargs='*', default=[], help='specify the csv data file to update. If leave empty, all files in ./data will be updated. Only valid when --load is set.') parser.add_argument('--clear', action='store_true', help='clear all data in vector store') parser.add_argument('-n', '--no-vector-store', action='store_true', help='run pure PAI-LLM without vector store') parser.add_argument('--config', help='input configuration json file',default='./config/config.json') args = parser.parse_args() if args.config: if os.path.exists(args.config): with open(args.config) as f: config = json.load(f) bot = LLMChatbot(config,args.clear) if args.load : files = args.files if len(files) == 0: DIR_PATH = os.path.dirname(os.path.realpath(__file__)) files = [os.path.join(DIR_PATH, 'data', x) for x in os.listdir(os.path.join(DIR_PATH, 'data'))] print(f'start loading files: {files}') bot.load_db(files) exit(0) # Start Question while True: print("Please enter a Question: ") question = input() if(args.no_vector_store): answer = bot.query(question,False) print('PAI-LLM answer:\n ' + answer) else: answer = bot.query(question,True) print('PAI-LLM + Hologres answer:\n ' + answer) else: print(f"{args.config} is not existed.") else : print("The config json file must be set.")