core/maxframe/dataframe/core.py [1094:1131]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    @property
    def ndim(self):
        """
        Return an int representing the number of axes / array dimensions.

        Return 1 if Series. Otherwise return 2 if DataFrame.

        See Also
        --------
        ndarray.ndim : Number of array dimensions.

        Examples
        --------
        >>> import maxframe.dataframe as md
        >>> s = md.Series({'a': 1, 'b': 2, 'c': 3})
        >>> s.ndim
        1

        >>> df = md.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
        >>> df.ndim
        2
        """
        return super().ndim

    @property
    def index(self):
        """
        The index (axis labels) of the Series.
        """
        idx = self._data.index
        idx._set_df_or_series(self, 0)
        return idx

    @index.setter
    def index(self, new_index):
        self.set_axis(new_index, axis=0, inplace=True)

    @property
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



core/maxframe/dataframe/core.py [1773:1807]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    @property
    def ndim(self):
        """
        Return an int representing the number of axes / array dimensions.

        Return 1 if Series. Otherwise return 2 if DataFrame.

        See Also
        --------
        ndarray.ndim : Number of array dimensions.

        Examples
        --------
        >>> import maxframe.dataframe as md
        >>> s = md.Series({'a': 1, 'b': 2, 'c': 3})
        >>> s.ndim
        1

        >>> df = md.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
        >>> df.ndim
        2
        """
        return super().ndim

    @property
    def index(self):
        idx = self._data.index
        idx._set_df_or_series(self, 0)
        return idx

    @index.setter
    def index(self, new_index):
        self.set_axis(new_index, axis=0, inplace=True)

    @property
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



