in core/maxframe/tensor/arithmetic/utils.py [0:0]
def arithmetic_operator(cls=None, init=True, sparse_mode=None):
def _decorator(cls):
def __init__(self, casting="same_kind", err=None, **kw):
err = err if err is not None else np.geterr()
super(cls, self).__init__(casting=casting, err=err, **kw)
def _is_sparse_binary_and_const(x1, x2):
if all(np.isscalar(x) for x in [x1, x2]):
return False
if all(
np.isscalar(x) or (hasattr(x, "issparse") and x.issparse())
for x in [x1, x2]
):
return True
return False
def _is_sparse_binary_or_const(x1, x2):
if (hasattr(x1, "issparse") and x1.issparse()) or (
hasattr(x2, "issparse") and x2.issparse()
):
return True
return False
_is_sparse_dict = dict(
always_false=lambda *_: False,
unary=lambda x: x.issparse(),
binary_and=_is_sparse_binary_and_const,
binary_or=_is_sparse_binary_or_const,
)
for v in _is_sparse_dict.values():
v.__name__ = "_is_sparse"
if init:
cls.__init__ = __init__
if sparse_mode in _is_sparse_dict:
cls._is_sparse = staticmethod(_is_sparse_dict[sparse_mode])
elif sparse_mode is not None: # pragma: no cover
raise ValueError(f"Unsupported sparse mode: {sparse_mode}")
return cls
if cls is not None:
return _decorator(cls)
else:
return _decorator