in core/maxframe/tensor/datasource/arange.py [0:0]
def arange(*args, **kwargs):
"""
Return evenly spaced values within a given interval.
Values are generated within the half-open interval ``[start, stop)``
(in other words, the interval including `start` but excluding `stop`).
For integer arguments the function is equivalent to the Python built-in
`range <http://docs.python.org/lib/built-in-funcs.html>`_ function,
but returns a tensor rather than a list.
When using a non-integer step, such as 0.1, the results will often not
be consistent. It is better to use ``linspace`` for these cases.
Parameters
----------
start : number, optional
Start of interval. The interval includes this value. The default
start value is 0.
stop : number
End of interval. The interval does not include this value, except
in some cases where `step` is not an integer and floating point
round-off affects the length of `out`.
step : number, optional
Spacing between values. For any output `out`, this is the distance
between two adjacent values, ``out[i+1] - out[i]``. The default
step size is 1. If `step` is specified as a position argument,
`start` must also be given.
dtype : dtype
The type of the output tensor. If `dtype` is not given, infer the data
type from the other input arguments.
gpu : bool, optional
Allocate the tensor on GPU if True, False as default
Returns
-------
arange : Tensor
Tensor of evenly spaced values.
For floating point arguments, the length of the result is
``ceil((stop - start)/step)``. Because of floating point overflow,
this rule may result in the last element of `out` being greater
than `stop`.
See Also
--------
linspace : Evenly spaced numbers with careful handling of endpoints.
ogrid: Tensors of evenly spaced numbers in N-dimensions.
mgrid: Grid-shaped tensors of evenly spaced numbers in N-dimensions.
Examples
--------
>>> import maxframe.tensor as mt
>>> mt.arange(3).execute()
array([0, 1, 2])
>>> mt.arange(3.0).execute()
array([ 0., 1., 2.])
>>> mt.arange(3,7).execute()
array([3, 4, 5, 6])
>>> mt.arange(3,7,2).execute()
array([3, 5])
"""
kw_args = [kwargs.get("start"), kwargs.get("stop"), kwargs.get("step")]
kw_def = any(arg is not None for arg in kw_args)
dtype = None
if not kw_def:
if len(args) == 1:
start = 0
stop = args[0]
step = 1
elif len(args) == 2:
start = args[0]
stop = args[1]
step = 1
elif len(args) == 3:
start, stop, step = args
elif len(args) == 4:
start, stop, step, dtype = args
dtype = np.dtype(dtype)
else:
raise TypeError("Required argument 'start' (pos 1) not found")
else:
names = "start", "stop", "step"
for i, arg in enumerate(args):
if kw_args[i] is not None:
raise TypeError(
f"Argument given by name ('{names[i]}') and position ({i})"
)
kw_args[i] = arg
start, stop, step = kw_args
if dtype is None:
if "dtype" in kwargs:
dtype = np.dtype(kwargs["dtype"])
else:
dtype = np.arange(0, type(stop)(1), step).dtype
start, stop = dtype.type(start), dtype.type(stop)
if dtype == np.datetime64 and not start:
raise ValueError(
"arange requires both a start and a stop for MaxFrame datetime64 ranges"
)
if dtype == np.datetime64:
span = np.array([stop - start])
span[0] = step
step = span[0]
dtype = np.dtype(stop.dtype)
else:
step = dtype.type(step)
size = max(int(np.ceil(np.true_divide(stop - start, step))), 0)
op = TensorArange(start, stop, step, dtype=dtype, gpu=kwargs.get("gpu", False))
shape = (size,)
return op(shape, chunk_size=kwargs.pop("chunk_size", None))