core/maxframe/dataframe/datasource/date_range.py (239 lines of code) (raw):

# Copyright 1999-2025 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from datetime import date, datetime, time import numpy as np import pandas as pd from pandas import NaT, Timestamp from pandas._libs.tslibs import timezones from pandas.tseries.frequencies import to_offset from pandas.tseries.offsets import Tick from ... import opcodes from ...core import OutputType from ...serialization.serializables import AnyField, BoolField, Int64Field, StringField from ...utils import no_default, pd_release_version from ..operators import DataFrameOperator, DataFrameOperatorMixin from ..utils import parse_index try: from pandas._libs.tslib import normalize_date except ImportError: # pragma: no cover def normalize_date(dt): # from pandas/_libs/tslibs/conversion.pyx if isinstance(dt, datetime): if isinstance(dt, pd.Timestamp): return dt.replace( hour=0, minute=0, second=0, microsecond=0, nanosecond=0 ) else: return dt.replace(hour=0, minute=0, second=0, microsecond=0) elif isinstance(dt, date): return datetime(dt.year, dt.month, dt.day) else: raise TypeError(f"Unrecognized type: {type(dt)}") _date_range_use_inclusive = pd_release_version[:2] >= (1, 4) # adapted from pandas.core.arrays.datetimes.generate_range def generate_range_count( start=None, end=None, periods=None, offset=None ): # pragma: no cover offset = to_offset(offset) start = Timestamp(start) start = start if start is not NaT else None end = Timestamp(end) end = end if end is not NaT else None if start and not offset.is_on_offset(start): start = offset.rollforward(start) elif end and not offset.is_on_offset(end): end = offset.rollback(end) if periods is None and end < start and offset.n >= 0: end = None periods = 0 if end is None: end = start + (periods - 1) * offset if start is None: start = end - (periods - 1) * offset cur = start count = 0 if offset.n >= 0: while cur <= end: count += 1 if cur == end: # GH#24252 avoid overflows by not performing the addition # in offset.apply unless we have to break # faster than cur + offset try: next_date = offset._apply(cur) except AttributeError: next_date = cur + offset if next_date <= cur: raise ValueError(f"Offset {offset} did not increment date") cur = next_date else: while cur >= end: count += 1 if cur == end: # GH#24252 avoid overflows by not performing the addition # in offset.apply unless we have to break # faster than cur + offset try: next_date = offset._apply(cur) except AttributeError: next_date = cur + offset if next_date >= cur: raise ValueError(f"Offset {offset} did not decrement date") cur = next_date return count class DataFrameDateRange(DataFrameOperator, DataFrameOperatorMixin): _op_type_ = opcodes.DATE_RANGE start = AnyField("start") end = AnyField("end") periods = Int64Field("periods") freq = AnyField("freq") tz = AnyField("tz") normalize = BoolField("normalize") name = StringField("name") inclusive = StringField("inclusive") def __init__( self, output_types=None, **kw, ): super().__init__(_output_types=output_types, **kw) if self.output_types is None: self.output_types = [OutputType.index] if getattr(self, "inclusive", None) is None: self.inclusive = "both" def __call__(self, shape, chunk_size=None): dtype = pd.Index([self.start]).dtype index_value = parse_index( pd.Index([], dtype=dtype), self.start, self.end, self.periods, self.tz ) # gen index value info index_value.value._min_val = self.start index_value.value._min_val_close = True index_value.value._max_val = self.end index_value.value._max_val_close = True index_value.value._is_unique = True index_value.value._is_monotonic_increasing = True index_value.value._freq = self.freq return self.new_index( None, shape=shape, dtype=dtype, index_value=index_value, name=self.name, raw_chunk_size=chunk_size, freq=self.freq, ) _midnight = time(0, 0) def _maybe_normalize_endpoints(start, end, normalize): # pragma: no cover _normalized = True if start is not None: if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: if normalize: end = normalize_date(end) _normalized = True else: _normalized = _normalized and end.time() == _midnight return start, end, _normalized def _infer_tz_from_endpoints(start, end, tz): # pragma: no cover """ If a timezone is not explicitly given via `tz`, see if one can be inferred from the `start` and `end` endpoints. If more than one of these inputs provides a timezone, require that they all agree. Parameters ---------- start : Timestamp end : Timestamp tz : tzinfo or None Returns ------- tz : tzinfo or None Raises ------ TypeError : if start and end timezones do not agree """ try: inferred_tz = timezones.infer_tzinfo(start, end) except AssertionError: # infer_tzinfo raises AssertionError if passed mismatched timezones raise TypeError( "Start and end cannot both be tz-aware with different timezones" ) inferred_tz = timezones.maybe_get_tz(inferred_tz) tz = timezones.maybe_get_tz(tz) if tz is not None and inferred_tz is not None: if not timezones.tz_compare(inferred_tz, tz): raise AssertionError("Inferred time zone not equal to passed time zone") elif inferred_tz is not None: tz = inferred_tz return tz def _maybe_localize_point( ts, is_none, is_not_none, freq, tz, ambiguous, nonexistent ): # pragma: no cover """ Localize a start or end Timestamp to the timezone of the corresponding start or end Timestamp Parameters ---------- ts : start or end Timestamp to potentially localize is_none : argument that should be None is_not_none : argument that should not be None freq : Tick, DateOffset, or None tz : str, timezone object or None ambiguous: str, localization behavior for ambiguous times nonexistent: str, localization behavior for nonexistent times Returns ------- ts : Timestamp """ # Make sure start and end are timezone localized if: # 1) freq = a Timedelta-like frequency (Tick) # 2) freq = None i.e. generating a linspaced range if is_none is None and is_not_none is not None: # Note: We can't ambiguous='infer' a singular ambiguous time; however, # we have historically defaulted ambiguous=False ambiguous = ambiguous if ambiguous != "infer" else False localize_args = {"ambiguous": ambiguous, "nonexistent": nonexistent, "tz": None} if isinstance(freq, Tick) or freq is None: localize_args["tz"] = tz ts = ts.tz_localize(**localize_args) return ts def date_range( start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=no_default, inclusive=None, chunk_size=None, **kwargs, ): """ Return a fixed frequency DatetimeIndex. Parameters ---------- start : str or datetime-like, optional Left bound for generating dates. end : str or datetime-like, optional Right bound for generating dates. periods : int, optional Number of periods to generate. freq : str or DateOffset, default 'D' Frequency strings can have multiples, e.g. '5H'. See :ref:`here <timeseries.offset_aliases>` for a list of frequency aliases. tz : str or tzinfo, optional Time zone name for returning localized DatetimeIndex, for example 'Asia/Hong_Kong'. By default, the resulting DatetimeIndex is timezone-naive. normalize : bool, default False Normalize start/end dates to midnight before generating date range. name : str, default None Name of the resulting DatetimeIndex. inclusive : {“both”, “neither”, “left”, “right”}, default “both” Include boundaries; Whether to set each bound as closed or open. **kwargs For compatibility. Has no effect on the result. Returns ------- rng : DatetimeIndex See Also -------- DatetimeIndex : An immutable container for datetimes. timedelta_range : Return a fixed frequency TimedeltaIndex. period_range : Return a fixed frequency PeriodIndex. interval_range : Return a fixed frequency IntervalIndex. Notes ----- Of the four parameters ``start``, ``end``, ``periods``, and ``freq``, exactly three must be specified. If ``freq`` is omitted, the resulting ``DatetimeIndex`` will have ``periods`` linearly spaced elements between ``start`` and ``end`` (closed on both sides). To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. Examples -------- **Specifying the values** The next four examples generate the same `DatetimeIndex`, but vary the combination of `start`, `end` and `periods`. Specify `start` and `end`, with the default daily frequency. >>> import maxframe.dataframe as md >>> md.date_range(start='1/1/2018', end='1/08/2018').execute() DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq='D') Specify `start` and `periods`, the number of periods (days). >>> md.date_range(start='1/1/2018', periods=8).execute() DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq='D') Specify `end` and `periods`, the number of periods (days). >>> md.date_range(end='1/1/2018', periods=8).execute() DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28', '2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D') Specify `start`, `end`, and `periods`; the frequency is generated automatically (linearly spaced). >>> md.date_range(start='2018-04-24', end='2018-04-27', periods=3).execute() DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00', '2018-04-27 00:00:00'], dtype='datetime64[ns]', freq=None) **Other Parameters** Changed the `freq` (frequency) to ``'M'`` (month end frequency). >>> md.date_range(start='1/1/2018', periods=5, freq='M').execute() DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30', '2018-05-31'], dtype='datetime64[ns]', freq='M') Multiples are allowed >>> md.date_range(start='1/1/2018', periods=5, freq='3M').execute() DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq='3M') `freq` can also be specified as an Offset object. >>> md.date_range(start='1/1/2018', periods=5, freq=md.offsets.MonthEnd(3)).execute() DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq='3M') Specify `tz` to set the timezone. >>> md.date_range(start='1/1/2018', periods=5, tz='Asia/Tokyo').execute() DatetimeIndex(['2018-01-01 00:00:00+09:00', '2018-01-02 00:00:00+09:00', '2018-01-03 00:00:00+09:00', '2018-01-04 00:00:00+09:00', '2018-01-05 00:00:00+09:00'], dtype='datetime64[ns, Asia/Tokyo]', freq='D') `inclusive` controls whether to include `start` and `end` that are on the boundary. The default, "both", includes boundary points on either end. >>> md.date_range(start='2017-01-01', end='2017-01-04', inclusive='both').execute() DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D') Use ``inclusive='left'`` to exclude `end` if it falls on the boundary. >>> md.date_range(start='2017-01-01', end='2017-01-04', closed='left').execute() DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'], dtype='datetime64[ns]', freq='D') Use ``inclusive='right'`` to exclude `start` if it falls on the boundary, and similarly inclusive='neither' will exclude both `start` and `end`. >>> md.date_range(start='2017-01-01', end='2017-01-04', closed='right').execute() DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D') .. note:: Pandas 1.4.0 or later is required to use ``inclusive='neither'``. Otherwise an error may be raised. """ # validate periods if isinstance(periods, (float, np.floating)): periods = int(periods) if periods is not None and not isinstance(periods, (int, np.integer)): raise TypeError(f"periods must be a number, got {periods}") if freq is None and any(arg is None for arg in [periods, start, end]): freq = "D" if sum(arg is not None for arg in [start, end, periods, freq]) != 3: raise ValueError( "Of the four parameters: start, end, periods, " "and freq, exactly three must be specified" ) freq = to_offset(freq) if _date_range_use_inclusive and closed is not no_default: warnings.warn( "Argument `closed` is deprecated in favor of `inclusive`.", FutureWarning ) elif closed is no_default: closed = None if inclusive is None and closed is not no_default: inclusive = closed if start is not None: start = pd.Timestamp(start) if end is not None: end = pd.Timestamp(end) if start is pd.NaT or end is pd.NaT: raise ValueError("Neither `start` nor `end` can be NaT") start, end, _ = _maybe_normalize_endpoints(start, end, normalize) tz = _infer_tz_from_endpoints(start, end, tz) if start is None and end is not None: # start is None and end is not None # adjust end first end = pd.date_range(end=end, periods=1, freq=freq)[0] if inclusive == "neither": end -= freq size = periods start = end - (periods - 1) * freq if inclusive in ("neither", "left"): size -= 1 elif inclusive == "right": # when start is None, closed == 'left' would not take effect # thus just ignore inclusive = "both" elif end is None: # end is None # adjust start first start = pd.date_range(start=start, periods=1, freq=freq)[0] size = periods end = start + (periods - 1) * freq if inclusive in ("neither", "right"): size -= 1 elif inclusive == "left": # when end is None, closed == 'left' would not take effect # thus just ignore inclusive = "both" else: if periods is None: periods = size = generate_range_count(start, end, periods, freq) else: size = periods if inclusive in ("left", "right"): size -= 1 elif inclusive == "neither": size -= 2 shape = (size,) op = DataFrameDateRange( start=start, end=end, periods=periods, freq=freq, tz=tz, normalize=normalize, name=name, inclusive=inclusive, **kwargs, ) return op(shape, chunk_size=chunk_size)