core/maxframe/dataframe/extensions/apply_chunk.py (291 lines of code) (raw):

# Copyright 1999-2025 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools from typing import Any, Callable, Dict, List, Tuple, Union import numpy as np import pandas as pd from ... import opcodes from ...core import OutputType from ...serialization.serializables import ( DictField, FunctionField, Int32Field, TupleField, ) from ...utils import quiet_stdio from ..core import DATAFRAME_TYPE, DataFrame, IndexValue, Series from ..operators import DataFrameOperator, DataFrameOperatorMixin from ..utils import ( build_df, build_series, copy_func_scheduling_hints, make_dtypes, pack_func_args, parse_index, validate_output_types, ) class DataFrameApplyChunkOperator(DataFrameOperator, DataFrameOperatorMixin): _op_type_ = opcodes.APPLY_CHUNK func = FunctionField("func") batch_rows = Int32Field("batch_rows", default=None) args = TupleField("args", default=None) kwargs = DictField("kwargs", default=None) def __init__(self, output_type=None, **kw): if output_type: kw["_output_types"] = [output_type] super().__init__(**kw) if hasattr(self, "func"): copy_func_scheduling_hints(self.func, self) def _call_dataframe(self, df, dtypes, index_value, element_wise): # return dataframe if self.output_types[0] == OutputType.dataframe: dtypes = make_dtypes(dtypes) # apply_chunk will use generate new range index for results return self.new_dataframe( [df], shape=df.shape if element_wise else (np.nan, len(dtypes)), index_value=index_value, columns_value=parse_index(dtypes.index, store_data=True), dtypes=dtypes, ) # return series if not isinstance(dtypes, tuple): raise TypeError( "Cannot determine dtype, " "please specify `dtype` as argument" ) name, dtype = dtypes return self.new_series( [df], shape=(np.nan,), name=name, dtype=dtype, index_value=index_value ) def _call_series(self, series, dtypes, index_value, element_wise): if self.output_types[0] == OutputType.series: if not isinstance(dtypes, tuple): raise TypeError( "Cannot determine dtype, " "please specify `dtype` as argument" ) name, dtype = dtypes shape = series.shape if element_wise else (np.nan,) return self.new_series( [series], dtype=dtype, shape=shape, index_value=index_value, name=name, ) dtypes = make_dtypes(dtypes) return self.new_dataframe( [series], shape=(np.nan, len(dtypes)), index_value=index_value, columns_value=parse_index(dtypes.index, store_data=True), dtypes=dtypes, ) def __call__( self, df_or_series: Union[DataFrame, Series], dtypes: Union[Tuple[str, Any], Dict[str, Any]] = None, output_type=None, index=None, ): args = self.args or () kwargs = self.kwargs or {} # if not dtypes and not skip_infer: packed_func = get_packed_func(df_or_series, self.func, *args, **kwargs) # if skip_infer, directly build a frame if self.output_types and self.output_types[0] == OutputType.df_or_series: return self.new_df_or_series([df_or_series]) # infer return index and dtypes dtypes, index_value, elementwise = self._infer_batch_func_returns( df_or_series, origin_func=self.func, packed_func=packed_func, given_output_type=output_type, given_dtypes=dtypes, given_index=index, ) if index_value is None: index_value = parse_index( None, (df_or_series.key, df_or_series.index_value.key, self.func) ) for arg, desc in zip((self.output_types, dtypes), ("output_types", "dtypes")): if arg is None: raise TypeError( f"Cannot determine {desc} by calculating with enumerate data, " "please specify it as arguments" ) if dtypes is None or len(dtypes) == 0: raise TypeError( "Cannot determine {dtypes} or {dtype} by calculating with enumerate data, " "please specify it as arguments" ) if isinstance(df_or_series, DATAFRAME_TYPE): return self._call_dataframe( df_or_series, dtypes=dtypes, index_value=index_value, element_wise=elementwise, ) return self._call_series( df_or_series, dtypes=dtypes, index_value=index_value, element_wise=elementwise, ) def _infer_batch_func_returns( self, input_df_or_series: Union[DataFrame, Series], origin_func: Union[str, Callable, np.ufunc], packed_func: Union[Callable, functools.partial], given_output_type: OutputType, given_dtypes: Union[Tuple[str, Any], pd.Series, List[Any], Dict[str, Any]], given_index: Union[pd.Index, IndexValue], given_elementwise: bool = False, *args, **kwargs, ): inferred_output_type = inferred_dtypes = inferred_index_value = None inferred_is_elementwise = False # handle numpy ufunc case if isinstance(origin_func, np.ufunc): inferred_output_type = OutputType.dataframe inferred_dtypes = None inferred_index_value = input_df_or_series.index_value inferred_is_elementwise = True elif self.output_types is not None and given_dtypes is not None: inferred_dtypes = given_dtypes # build same schema frame toto execute if isinstance(input_df_or_series, DATAFRAME_TYPE): empty_data = build_df(input_df_or_series, fill_value=1, size=1) else: empty_data = build_series( input_df_or_series, size=1, name=input_df_or_series.name ) try: # execute with np.errstate(all="ignore"), quiet_stdio(): infer_result = packed_func(empty_data, *args, **kwargs) # if executed successfully, get index and dtypes from returned object if inferred_index_value is None: if ( infer_result is None or not hasattr(infer_result, "index") or infer_result.index is None ): inferred_index_value = parse_index(pd.RangeIndex(-1)) elif infer_result.index is empty_data.index: inferred_index_value = input_df_or_series.index_value else: inferred_index_value = parse_index(infer_result.index, packed_func) if isinstance(infer_result, pd.DataFrame): if ( given_output_type is not None and given_output_type != OutputType.dataframe ): raise TypeError( f'Cannot infer output_type as "series", ' f'please specify `output_type` as "dataframe"' ) inferred_output_type = given_output_type or OutputType.dataframe inferred_dtypes = ( given_dtypes if given_dtypes is not None else infer_result.dtypes ) else: if ( given_output_type is not None and given_output_type == OutputType.dataframe ): raise TypeError( f'Cannot infer output_type as "dataframe", ' f'please specify `output_type` as "series"' ) inferred_output_type = given_output_type or OutputType.series inferred_dtypes = (infer_result.name, infer_result.dtype) except: # noqa: E722 pass # merge specified and inferred index, dtypes, output_type # elementwise used to decide shape self.output_types = ( [inferred_output_type] if not self.output_types and inferred_output_type else self.output_types ) inferred_dtypes = given_dtypes if given_dtypes is not None else inferred_dtypes if given_index is not None: inferred_index_value = ( parse_index(given_index) if given_index is not input_df_or_series.index_value else input_df_or_series.index_value ) inferred_is_elementwise = given_elementwise or inferred_is_elementwise return inferred_dtypes, inferred_index_value, inferred_is_elementwise def get_packed_func(df, func, *args, **kwargs) -> Any: stub_df = build_df(df, fill_value=1, size=1) return pack_func_args(stub_df, func, *args, **kwargs) def df_apply_chunk( dataframe, func: Union[str, Callable], batch_rows=None, dtypes=None, dtype=None, name=None, output_type=None, index=None, skip_infer=False, args=(), **kwargs, ): """ Apply a function that takes pandas DataFrame and outputs pandas DataFrame/Series. The pandas DataFrame given to the function is a chunk of the input dataframe, consider as a batch rows. The objects passed into this function are slices of the original DataFrame, containing at most batch_rows number of rows and all columns. It is equivalent to merging multiple ``df.apply`` with ``axis=1`` inputs and then passing them into the function for execution, thereby improving performance in specific scenarios. The function output can be either a DataFrame or a Series. ``apply_chunk`` will ultimately merge the results into a new DataFrame or Series. Don't expect to receive all rows of the DataFrame in the function, as it depends on the implementation of MaxFrame and the internal running state of MaxCompute. Parameters ---------- func : str or Callable Function to apply to the dataframe chunk. batch_rows : int Specify expected number of rows in a batch, as well as the len of function input dataframe. When the remaining data is insufficient, it may be less than this number. output_type : {'dataframe', 'series'}, default None Specify type of returned object. See `Notes` for more details. dtypes : Series, default None Specify dtypes of returned DataFrames. See `Notes` for more details. dtype : numpy.dtype, default None Specify dtype of returned Series. See `Notes` for more details. name : str, default None Specify name of returned Series. See `Notes` for more details. index : Index, default None Specify index of returned object. See `Notes` for more details. skip_infer: bool, default False Whether infer dtypes when dtypes or output_type is not specified. args : tuple Positional arguments to pass to ``func`` in addition to the array/series. **kwds Additional keyword arguments to pass as keywords arguments to ``func``. Returns ------- Series or DataFrame Result of applying ``func`` along the given chunk of the DataFrame. See Also -------- DataFrame.apply: For non-batching operations. Series.mf.apply_chunk: Apply function to Series chunk. Notes ----- When deciding output dtypes and shape of the return value, MaxFrame will try applying ``func`` onto a mock DataFrame, and the apply call may fail. When this happens, you need to specify the type of apply call (DataFrame or Series) in output_type. * For DataFrame output, you need to specify a list or a pandas Series as ``dtypes`` of output DataFrame. ``index`` of output can also be specified. * For Series output, you need to specify ``dtype`` and ``name`` of output Series. * For any input with data type ``pandas.ArrowDtype(pyarrow.MapType)``, it will always be converted to a Python dict. And for any output with this data type, it must be returned as a Python dict as well. Examples -------- >>> import numpy as np >>> import maxframe.tensor as mt >>> import maxframe.dataframe as md >>> df = md.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df.execute() A B 0 4 9 1 4 9 2 4 9 Use different batch_rows will collect different dataframe chunk into the function. For example, when you use ``batch_rows=3``, it means that the function will wait until 3 rows are collected. >>> df.mf.apply_chunk(np.sum, batch_rows=3).execute() A 12 B 27 dtype: int64 While, if ``batch_rows=2``, the data will be divided into at least two segments. Additionally, if your function alters the shape of the dataframe, it may result in different outputs. >>> df.mf.apply_chunk(np.sum, batch_rows=2).execute() A 8 B 18 A 4 B 9 dtype: int64 If the function requires some parameters, you can specify them using args or kwargs. >>> def calc(df, x, y): ... return df * x + y >>> df.mf.apply_chunk(calc, args=(10,), y=20).execute() A B 0 60 110 1 60 110 2 60 110 The batch rows will benefit the actions consume a dataframe, like sklearn predict. You can easily use sklearn in MaxFrame to perform offline inference, and apply_chunk makes this process more efficient. The ``@with_python_requirements`` provides the capability to automatically package and load dependencies. Once you rely on some third-party dependencies, MaxFrame may not be able to correctly infer the return type. Therefore, using ``output_type`` with ``dtype`` or ``dtypes`` is necessary. >>> from maxframe.udf import with_python_requirements >>> data = { ... 'A': np.random.rand(10), ... 'B': np.random.rand(10) ... } >>> pd_df = pd.DataFrame(data) >>> X = pd_df[['A']] >>> y = pd_df['B'] >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LinearRegression >>> model = LinearRegression() >>> model.fit(X, y) >>> @with_python_requirements("scikit-learn") ... def predict(df): ... predict_B = model.predict(df[["A"]]) ... return pd.Series(predict_B, index=df.A.index) >>> df.mf.apply_chunk(predict, batch_rows=3, output_type="series", dtype="float", name="predict_B").execute() 0 -0.765025 1 -0.765025 2 -0.765025 Name: predict_B, dtype: float64 Create a dataframe with a dict type. >>> import pyarrow as pa >>> import pandas as pd >>> from maxframe.lib.dtypes_extension import dict_ >>> col_a = pd.Series( ... data=[[("k1", 1), ("k2", 2)], [("k1", 3)], None], ... index=[1, 2, 3], ... dtype=dict_(pa.string(), pa.int64()), ... ) >>> col_b = pd.Series( ... data=["A", "B", "C"], ... index=[1, 2, 3], ... ) >>> df = md.DataFrame({"A": col_a, "B": col_b}) >>> df.execute() A B 1 [('k1', 1), ('k2', 2)] A 2 [('k1', 3)] B 3 <NA> C Define a function that updates the map type with a new key-value pair in a batch. >>> def custom_set_item(df): ... for name, value in df["A"].items(): ... if value is not None: ... df["A"][name]["x"] = 100 ... return df >>> mf.apply_chunk( ... process, ... output_type="dataframe", ... dtypes=md_df.dtypes.copy(), ... batch_rows=2, ... skip_infer=True, ... index=md_df.index, ... ) A B 1 [('k1', 1), ('k2', 2), ('x', 10))] A 2 [('k1', 3), ('x', 10)] B 3 <NA> C """ if not isinstance(func, Callable): raise TypeError("function must be a callable object") if batch_rows is not None: if not isinstance(batch_rows, int): raise TypeError("batch_rows must be an integer") elif batch_rows <= 0: raise ValueError("batch_rows must be greater than 0") dtypes = (name, dtype) if dtype is not None else dtypes output_types = kwargs.pop("output_types", None) object_type = kwargs.pop("object_type", None) output_types = validate_output_types( output_type=output_type, output_types=output_types, object_type=object_type ) output_type = output_types[0] if output_types else None if skip_infer and output_type is None: output_type = OutputType.df_or_series # bind args and kwargs op = DataFrameApplyChunkOperator( func=func, batch_rows=batch_rows, output_type=output_type, args=args, kwargs=kwargs, ) return op( dataframe, dtypes=dtypes, index=index, ) def series_apply_chunk( dataframe_or_series, func: Union[str, Callable], batch_rows, dtypes=None, dtype=None, name=None, output_type=None, index=None, skip_infer=False, args=(), **kwargs, ): """ Apply a function that takes pandas Series and outputs pandas DataFrame/Series. The pandas DataFrame given to the function is a chunk of the input series. The objects passed into this function are slices of the original series, containing at most batch_rows number of elements. The function output can be either a DataFrame or a Series. ``apply_chunk`` will ultimately merge the results into a new DataFrame or Series. Don't expect to receive all elements of series in the function, as it depends on the implementation of MaxFrame and the internal running state of MaxCompute. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on series. Parameters ---------- func : function Python function or NumPy ufunc to apply. batch_rows : int Specify expected number of elements in a batch, as well as the len of function input series. When the remaining data is insufficient, it may be less than this number. output_type : {'dataframe', 'series'}, default None Specify type of returned object. See `Notes` for more details. dtypes : Series, default None Specify dtypes of returned DataFrames. See `Notes` for more details. dtype : numpy.dtype, default None Specify dtype of returned Series. See `Notes` for more details. name : str, default None Specify name of returned Series. See `Notes` for more details. index : Index, default None Specify index of returned object. See `Notes` for more details. args : tuple Positional arguments passed to func after the series value. skip_infer: bool, default False Whether infer dtypes when dtypes or output_type is not specified. **kwds Additional keyword arguments passed to func. Returns ------- Series or DataFrame If func returns a Series object the result will be a Series, else the result will be a DataFrame. See Also -------- DataFrame.apply_chunk: Apply function to DataFrame chunk. Series.apply: For non-batching operations. Notes ----- When deciding output dtypes and shape of the return value, MaxFrame will try applying ``func`` onto a mock Series, and the apply call may fail. When this happens, you need to specify the type of apply call (DataFrame or Series) in output_type. * For DataFrame output, you need to specify a list or a pandas Series as ``dtypes`` of output DataFrame. ``index`` of output can also be specified. * For Series output, you need to specify ``dtype`` and ``name`` of output Series. * For any input with data type ``pandas.ArrowDtype(pyarrow.MapType)``, it will always be converted to a Python dict. And for any output with this data type, it must be returned as a Python dict as well. Examples -------- Create a series with typical summer temperatures for each city. >>> import maxframe.tensor as mt >>> import maxframe.dataframe as md >>> s = md.Series([20, 21, 12], ... index=['London', 'New York', 'Helsinki']) >>> s.execute() London 20 New York 21 Helsinki 12 dtype: int64 Square the values by defining a function and passing it as an argument to ``apply_chunk()``. >>> def square(x): ... return x ** 2 >>> s.mf.apply_chunk(square, batch_rows=2).execute() London 400 New York 441 Helsinki 144 dtype: int64 Square the values by passing an anonymous function as an argument to ``apply_chunk()``. >>> s.mf.apply_chunk(lambda x: x**2, batch_rows=2).execute() London 400 New York 441 Helsinki 144 dtype: int64 Define a custom function that needs additional positional arguments and pass these additional arguments using the ``args`` keyword. >>> def subtract_custom_value(x, custom_value): ... return x - custom_value >>> s.mf.apply_chunk(subtract_custom_value, args=(5,), batch_rows=3).execute() London 15 New York 16 Helsinki 7 dtype: int64 Define a custom function that takes keyword arguments and pass these arguments to ``apply_chunk``. >>> def add_custom_values(x, **kwargs): ... for month in kwargs: ... x += kwargs[month] ... return x >>> s.mf.apply_chunk(add_custom_values, batch_rows=2, june=30, july=20, august=25).execute() London 95 New York 96 Helsinki 87 dtype: int64 If func return a dataframe, the apply_chunk will return a dataframe as well. >>> def get_dataframe(x): ... return pd.concat([x, x], axis=1) >>> s.mf.apply_chunk(get_dataframe, batch_rows=2).execute() 0 1 London 20 20 New York 21 21 Helsinki 12 12 Provides a dtypes or dtype with name to naming the output schema. >>> s.mf.apply_chunk( ... get_dataframe, ... batch_rows=2, ... dtypes={"A": np.int_, "B": np.int_}, ... output_type="dataframe" ... ).execute() A B London 20 20 New York 21 21 Helsinki 12 12 Create a series with a dict type. >>> import pyarrow as pa >>> from maxframe.lib.dtypes_extension import dict_ >>> s = md.Series( ... data=[[("k1", 1), ("k2", 2)], [("k1", 3)], None], ... index=[1, 2, 3], ... dtype=dict_(pa.string(), pa.int64()), ... ) >>> s.execute() 1 [('k1', 1), ('k2', 2)] 2 [('k1', 3)] 3 <NA> dtype: map<string, int64>[pyarrow] Define a function that updates the map type with a new key-value pair in a batch. >>> def custom_set_item(row): ... for _, value in row.items(): ... if value is not None: ... value["x"] = 100 ... return row >>> s.mf.apply_chunk( ... custom_set_item, ... output_type="series", ... dtype=s.dtype, ... batch_rows=2, ... skip_infer=True, ... index=s.index, ... ).execute() 1 [('k1', 1), ('k2', 2), ('x', 100)] 2 [('k1', 3), ('x', 100)] 3 <NA> dtype: map<string, int64>[pyarrow] """ if not isinstance(func, Callable): raise TypeError("function must be a callable object") if not isinstance(batch_rows, int): raise TypeError("batch_rows must be an integer") if batch_rows <= 0: raise ValueError("batch_rows must be greater than 0") # bind args and kwargs output_types = kwargs.pop("output_types", None) object_type = kwargs.pop("object_type", None) output_types = validate_output_types( output_type=output_type, output_types=output_types, object_type=object_type ) output_type = output_types[0] if output_types else None if skip_infer and output_type is None: output_type = OutputType.df_or_series op = DataFrameApplyChunkOperator( func=func, batch_rows=batch_rows, output_type=output_type, args=args, kwargs=kwargs, ) dtypes = (name, dtype) if dtype is not None else dtypes return op( dataframe_or_series, dtypes=dtypes, output_type=output_type, index=index, )