# Copyright 1999-2025 Alibaba Group Holding Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict

from ....dataframe.core import DATAFRAME_TYPE, SERIES_TYPE
from .core import LLM


class MultiModalLLM(LLM):
    def generate(
        self,
        data,
        prompt_template: Dict[str, Any],
        params: Dict[str, Any] = None,
    ):
        raise NotImplementedError


def generate(
    data,
    model: MultiModalLLM,
    prompt_template: Dict[str, Any],
    params: Dict[str, Any] = None,
):
    """
    Generate text with multi model llm based on given data and prompt template.

    Parameters
    ----------
    data : DataFrame or Series
        Input data used for generation. Can be maxframe DataFrame, Series that contain text to be processed.
    model : MultiModalLLM
        Language model instance support **MultiModal** inputs used for text generation.
    prompt_template : List[Dict[str, List[Dict[str, str]]]]
        List of message with column names as placeholders. Each message contains a role and content. Content is a list of dict, each dict contains a text or image, the value can reference column data from input.

        Here is an example of prompt template.

        .. code-block:: python

            [
                {
                    "role": "<role>",  # e.g. "user" or "assistant"
                    "content": [
                        {
                            # At least one of these fields is required
                            "image": "<image_data_url>",  # optional
                            "text": "<prompt_text_template>"  # optional
                        },
                        ...
                    ]
                }
            ]

        Where:

        - ``text`` can be a Python format string using column names from input data as parameters (e.g. ``"{column_name}"``)
        - ``image`` should be a DataURL string following `RFC2397 <https://en.wikipedia.org/wiki/Data_URI_scheme>`_ standard with format.

        .. code-block:: none

            data:<mime_type>[;base64],<column_name>


    params : Dict[str, Any], optional
        Additional parameters for generation configuration, by default None.
        Can include settings like temperature, max_tokens, etc.

    Returns
    -------
    DataFrame
        Generated text raw response and success status. If the success is False, the generated text will return the
        error message.

    Notes
    -----
    - The ``api_key_resource`` parameter should reference a text file resource in MaxCompute that contains only your DashScope API key.

    - Using DashScope services requires enabling public network access for your MaxCompute project. This can be configured through the MaxCompute console by `enabling the Internet access feature <https://help.aliyun.com/zh/maxcompute/user-guide/network-connection-process>`_ for your project. Without this configuration, the API calls to DashScope will fail due to network connectivity issues.

    Examples
    --------
    You can initialize a DashScope multi-modal model (such as qwen-vl-max) by providing a model name and an ``api_key_resource``.
    The ``api_key_resource`` is a MaxCompute resource name that points to a text file containing a `DashScope <https://dashscope.aliyun.com/>`_ API key.

    >>> from maxframe.learn.contrib.llm.models.dashscope import DashScopeMultiModalLLM
    >>> import maxframe.dataframe as md
    >>>
    >>> model = DashScopeMultiModalLLM(
    ...     name="qwen-vl-max",
    ...     api_key_resource="<api-key-resource-name>"
    ... )

    We use Data Url Schema to provide multi modal input in prompt template, here is an example to fill in the image from table.

    Assuming you have a MaxCompute table with two columns: ``image_id`` (as the index) and ``encoded_image_data_base64`` (containing Base64 encoded image data),
    you can construct a prompt message template as follows:

    >>> df = md.read_odps_table("image_content", index_col="image_id")

    >>> prompt_template = [
    ...     {
    ...         "role": "user",
    ...         "content": [
    ...             {
    ...                 "image": "_image_data_base64",
    ...             },
    ...             {
    ...                 "text": "Analyze this image in detail",
    ...             },
    ...         ],
    ...     },
    ... ]
    >>> result = model.generate(df, prompt_template)
    >>> result.execute()
    """
    if not isinstance(data, DATAFRAME_TYPE) and not isinstance(data, SERIES_TYPE):
        raise ValueError("data must be a maxframe dataframe or series object")
    if not isinstance(model, MultiModalLLM):
        raise ValueError("model must be a MultiModalLLM object")
    params = params if params is not None else dict()
    model.validate_params(params)
    return model.generate(data, prompt_template, params)
