core/maxframe/learn/contrib/xgboost/regressor.py (59 lines of code) (raw):

# Copyright 1999-2025 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union from ..utils import make_import_error_func from .core import XGBScikitLearnBase, xgboost if not xgboost: XGBRegressor = make_import_error_func("xgboost") else: from xgboost.sklearn import XGBRegressorBase from .core import wrap_evaluation_matrices from .predict import predict from .train import train class XGBRegressor(XGBScikitLearnBase, XGBRegressorBase): """ Implementation of the scikit-learn API for XGBoost regressor. """ def __init__( self, xgb_model: Union[xgboost.XGBRegressor, xgboost.Booster] = None, **kwargs, ): super().__init__(**kwargs) self._set_model(xgb_model) def fit( self, X, y, sample_weight=None, base_margin=None, eval_set=None, sample_weight_eval_set=None, base_margin_eval_set=None, **kw, ): session = kw.pop("session", None) run_kwargs = kw.pop("run_kwargs", dict()) self._n_features_in = X.shape[1] dtrain, evals = wrap_evaluation_matrices( None, X, y, sample_weight, base_margin, eval_set, sample_weight_eval_set, base_margin_eval_set, ) params = self.get_xgb_params() if not params.get("objective"): params["objective"] = "reg:squarederror" self.evals_result_ = dict() result = train( params, dtrain, num_boost_round=self.get_num_boosting_rounds(), evals=evals, evals_result=self.evals_result_, session=session, run_kwargs=run_kwargs, ) self._Booster = result return self def predict(self, data, **kw): return predict(self.get_booster(), data, **kw)