core/maxframe/tensor/misc/where.py (34 lines of code) (raw):

#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2025 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from ... import opcodes from ...serialization.serializables import KeyField from ..datasource import tensor as astensor from ..operators import TensorOperator, TensorOperatorMixin from ..utils import broadcast_shape from .broadcast_to import broadcast_to class TensorWhere(TensorOperator, TensorOperatorMixin): _op_type_ = opcodes.WHERE condition = KeyField("condition", default=None) x = KeyField("x", default=None) y = KeyField("y", default=None) def _set_inputs(self, inputs): super()._set_inputs(inputs) self.condition = self._inputs[0] self.x = self._inputs[1] self.y = self._inputs[2] def __call__(self, condition, x, y, shape=None): shape = shape or broadcast_shape(condition.shape, x.shape, y.shape) return self.new_tensor([condition, x, y], shape) def where(condition, x=None, y=None): """ Return elements, either from `x` or `y`, depending on `condition`. If only `condition` is given, return ``condition.nonzero()``. Parameters ---------- condition : array_like, bool When True, yield `x`, otherwise yield `y`. x, y : array_like, optional Values from which to choose. `x`, `y` and `condition` need to be broadcastable to some shape. Returns ------- out : Tensor or tuple of Tensors If both `x` and `y` are specified, the output tensor contains elements of `x` where `condition` is True, and elements from `y` elsewhere. If only `condition` is given, return the tuple ``condition.nonzero()``, the indices where `condition` is True. See Also -------- nonzero, choose Notes ----- If `x` and `y` are given and input arrays are 1-D, `where` is equivalent to:: [xv if c else yv for (c,xv,yv) in zip(condition,x,y)] Examples -------- >>> import maxframe.tensor as mt >>> mt.where([[True, False], [True, True]], ... [[1, 2], [3, 4]], ... [[9, 8], [7, 6]]).execute() array([[1, 8], [3, 4]]) >>> mt.where([[0, 1], [1, 0]]).execute() (array([0, 1]), array([1, 0])) >>> x = mt.arange(9.).reshape(3, 3) >>> mt.where( x > 5 ).execute() (array([2, 2, 2]), array([0, 1, 2])) >>> mt.where(x < 5, x, -1).execute() # Note: broadcasting. array([[ 0., 1., 2.], [ 3., 4., -1.], [-1., -1., -1.]]) Find the indices of elements of `x` that are in `goodvalues`. >>> goodvalues = [3, 4, 7] >>> ix = mt.isin(x, goodvalues) >>> ix.execute() array([[False, False, False], [ True, True, False], [False, True, False]]) >>> mt.where(ix).execute() (array([1, 1, 2]), array([0, 1, 1])) """ if (x is None) != (y is None): raise ValueError("either both or neither of x and y should be given") if x is None and y is None: return astensor(condition).nonzero() x, y = astensor(x), astensor(y) dtype = np.result_type(x.dtype, y.dtype) shape = broadcast_shape(x.shape, y.shape) if np.isscalar(condition): return broadcast_to(x if condition else y, shape).astype(dtype) else: condition = astensor(condition) op = TensorWhere(dtype=dtype) return op(condition, x, y, shape=shape)