in oss/utils_pool.go [39:107]
func (p *maxSlicePool) Get(ctx context.Context) (*[]byte, error) {
// check if context is canceled before attempting to get a slice
// this ensures priority is given to the cancel case first
select {
case <-ctx.Done():
return nil, ctx.Err()
default:
}
p.mtx.RLock()
for {
select {
case bs, ok := <-p.slices:
p.mtx.RUnlock()
if !ok {
// attempt to get on a zero capacity pool
return nil, errZeroCapacity
}
return bs, nil
case <-ctx.Done():
p.mtx.RUnlock()
return nil, ctx.Err()
default:
// pass
}
select {
case _, ok := <-p.allocations:
p.mtx.RUnlock()
if !ok {
// attempt to get on a zero capacity pool
return nil, errZeroCapacity
}
return p.allocator(), nil
case <-ctx.Done():
p.mtx.RUnlock()
return nil, ctx.Err()
default:
// In the event that there are no slices or allocations available
// This prevents some deadlock situations that can occur around sync.RWMutex
// When a lock request occurs on ModifyCapacity, no new readers are allowed to acquire a read lock.
// By releasing the read lock here and waiting for a notification, we prevent a deadlock situation where
// Get could hold the read lock indefinitely waiting for capacity, ModifyCapacity is waiting for a write lock,
// and a Put is blocked trying to get a read-lock which is blocked by ModifyCapacity.
// Short-circuit if the pool capacity is zero.
if p.max == 0 {
p.mtx.RUnlock()
return nil, errZeroCapacity
}
// Since we will be releasing the read-lock we need to take the reference to the channel.
// Since channels are references we will still get notified if slices are added, or if
// the channel is closed due to a capacity modification. This specifically avoids a data race condition
// where ModifyCapacity both closes a channel and initializes a new one while we don't have a read-lock.
c := p.capacityChange
p.mtx.RUnlock()
select {
case _ = <-c:
p.mtx.RLock()
case <-ctx.Done():
return nil, ctx.Err()
}
}
}
}