def _do_persist()

in odps/df/backends/sqlalchemy/engine.py [0:0]


    def _do_persist(self, expr_dag, expr, name, partitions=None, partition=None,
                    odps=None, project=None, ui=None,
                    progress_proportion=1, execute_percent=0.5, lifecycle=None,
                    overwrite=True, drop_table=False, create_table=True,
                    drop_partition=False, create_partition=False, cast=False, **kwargs):
        expr_dag = self._convert_table(expr_dag)
        self._rewrite(expr_dag)

        src_expr = expr
        expr = expr_dag.root
        odps = odps or self._odps

        try:
            import pandas
        except ImportError:
            raise DependencyNotInstalledError('persist requires for pandas')

        df = self._do_execute(expr_dag, src_expr, ui=ui,
                              progress_proportion=progress_proportion * execute_percent, **kwargs)
        schema = TableSchema(columns=df.columns)

        if partitions is not None:
            if drop_partition:
                raise ValueError('Cannot drop partitions when specify `partitions`')
            if create_partition:
                raise ValueError('Cannot create partitions when specify `partitions`')

            if isinstance(partitions, tuple):
                partitions = list(partitions)
            if not isinstance(partitions, list):
                partitions = [partitions, ]

            for p in partitions:
                if p not in schema:
                    raise ValueError(
                            'Partition field(%s) does not exist in DataFrame schema' % p)

            schema = df_schema_to_odps_schema(schema)
            columns = [c for c in schema.columns if c.name not in partitions]
            ps = [Partition(name=t, type=schema.get_type(t)) for t in partitions]
            schema = TableSchema(columns=columns, partitions=ps)

            if odps.exist_table(name, project=project) or not create_table:
                t = odps.get_table(name, project=project)
            else:
                t = odps.create_table(name, schema, project=project)
        elif partition is not None:
            if odps.exist_table(name, project=project) or not create_table:
                t = odps.get_table(name, project=project)
                partition = self._get_partition(partition, t)

                if drop_partition:
                    t.delete_partition(partition, if_exists=True)
                if create_partition:
                    t.create_partition(partition, if_not_exists=True)
            else:
                partition = self._get_partition(partition)
                project_obj = odps.get_project(project)
                column_names = [n for n in expr.schema.names if n not in partition]
                column_types = [
                    df_type_to_odps_type(expr.schema[n].type, project=project_obj)
                    for n in column_names
                ]
                partition_names = [n for n in partition.keys]
                partition_types = ['string'] * len(partition_names)
                t = odps.create_table(
                    name, TableSchema.from_lists(
                        column_names, column_types, partition_names, partition_types
                    ),
                    project=project,
                )
                if create_partition is None or create_partition is True:
                    t.create_partition(partition)
        else:
            if drop_partition:
                raise ValueError('Cannot drop partition for non-partition table')
            if create_partition:
                raise ValueError('Cannot create partition for non-partition table')

            if odps.exist_table(name, project=project) or not create_table:
                t = odps.get_table(name, project=project)
                if t.table_schema.partitions:
                    raise CompileError('Cannot insert into partition table %s without specifying '
                                       '`partition` or `partitions`.')
            else:
                t = odps.create_table(name, df_schema_to_odps_schema(schema), project=project)

        write_table(df, t, ui=ui, cast=cast, overwrite=overwrite, partitions=partitions, partition=partition,
                    progress_proportion=progress_proportion * (1 - execute_percent))

        if partition:
            filters = []
            df = DataFrame(t)
            for k in partition.keys:
                filters.append(df[k] == partition[k])
            return df.filter(*filters)
        return DataFrame(t)