odps/static/algorithms/metrics.xml (350 lines of code) (raw):
<?xml version='1.0' encoding='UTF-8'?>
<algorithms baseClass="BaseMetricsAlgorithm">
<algorithm codeName="ConfusionMatrix">
<exportFunction>true</exportFunction>
<public>false</public>
<params>
<param name="inputTableName" required="true">
<exporter>get_input_table_name</exporter>
<inputName>input</inputName>
</param>
<param name="inputTablePartitions">
<exporter>get_input_table_partitions</exporter>
<inputName>input</inputName>
</param>
<param name="labelColName" required="true">
<alias>labelCol</alias>
<exporter>get_label_column</exporter>
<inputName>input</inputName>
<docs>name of label column in input table</docs>
</param>
<param name="predictionColName" required="true">
<alias>predictCol</alias>
<exporter>get_predicted_class_column</exporter>
<inputName>model</inputName>
</param>
<param name="outputTableName">
<exporter>get_output_table_name</exporter>
<outputName>output</outputName>
</param>
</params>
<ports>
<port name="input">
<ioType>INPUT</ioType>
<sequence>1</sequence>
<type>DATA</type>
<docs>train set with defined label</docs>
</port>
<port name="output">
<ioType>OUTPUT</ioType>
<sequence>1</sequence>
<type>DATA</type>
<docs>trained model which can be used in prediction</docs>
</port>
</ports>
<metas>
<meta name="xflowName" value="confusionmatrix"/>
<meta name="xflowProjectName" value="algo_public"/>
<meta name="calculator" value="$package_root.metrics._customize.get_confusion_matrix_result"/>
</metas>
</algorithm>
<algorithm codeName="ROC">
<exportFunction>true</exportFunction>
<public>false</public>
<params>
<param name="inputTableName" required="true">
<exporter>get_input_table_name</exporter>
<inputName>input</inputName>
</param>
<param name="inputTablePartitions">
<exporter>get_input_table_partitions</exporter>
<inputName>input</inputName>
</param>
<param name="labelColName" required="true">
<alias>labelCol</alias>
<exporter>get_label_column</exporter>
<inputName>input</inputName>
<docs>name of label column in input table</docs>
</param>
<param name="goodValue">
</param>
<param name="predictionColName" required="true">
<alias>predictCol</alias>
<exporter>get_predicted_class_column</exporter>
<inputName>model</inputName>
</param>
<param name="predictionScoreName" required="true">
<alias>scoreCol</alias>
<exporter>get_predicted_score_column</exporter>
<inputName>model</inputName>
</param>
<param name="outputTableName">
<exporter>get_output_table_name</exporter>
<outputName>output</outputName>
</param>
</params>
<ports>
<port name="input">
<ioType>INPUT</ioType>
<sequence>1</sequence>
<type>DATA</type>
<docs>train set with defined label</docs>
</port>
<port name="output">
<ioType>OUTPUT</ioType>
<sequence>1</sequence>
<type>DATA</type>
<docs>trained model which can be used in prediction</docs>
</port>
</ports>
<metas>
<meta name="xflowName" value="roc"/>
<meta name="xflowProjectName" value="algo_public"/>
<meta name="calculator" value="$package_root.metrics._customize.get_roc_result"/>
</metas>
</algorithm>
<algorithm codeName="EvalRegression">
<exportFunction>true</exportFunction>
<public>false</public>
<params>
<param name="inputTableName" required="true">
<exporter>get_input_table_name</exporter>
<inputName>input</inputName>
</param>
<param name="inputTablePartitions">
<exporter>get_input_table_partitions</exporter>
<inputName>input</inputName>
</param>
<param name="yColName" required="true">
<alias>labelCol</alias>
<exporter>get_label_column</exporter>
<inputName>input</inputName>
<docs>name of label column in input table</docs>
</param>
<param name="predictionColName" required="true">
<alias>predictCol</alias>
<exporter>get_predicted_class_column</exporter>
<inputName>model</inputName>
</param>
<param name="indexOutputTableName">
<exporter>get_output_table_name</exporter>
<outputName>index</outputName>
</param>
<param name="residualOutputTableName">
<exporter>get_output_table_name</exporter>
<outputName>residual</outputName>
</param>
</params>
<ports>
<port name="input">
<ioType>INPUT</ioType>
<sequence>1</sequence>
<type>DATA</type>
<docs>train set with defined label</docs>
</port>
<port name="index">
<ioType>OUTPUT</ioType>
<sequence>1</sequence>
<type>DATA</type>
<docs>trained model which can be used in prediction</docs>
</port>
<port name="residual">
<ioType>OUTPUT</ioType>
<sequence>2</sequence>
<type>DATA</type>
<docs>trained model which can be used in prediction</docs>
</port>
</ports>
<metas>
<meta name="xflowName" value="regression_evaluation"/>
<meta name="xflowProjectName" value="algo_public"/>
<meta name="calculator" value="$package_root.metrics._customize.get_regression_eval_result"/>
</metas>
</algorithm>
<algorithm codeName="EvalBinaryClass">
<exportFunction>true</exportFunction>
<params>
<param name="inputTableName" required="true">
<exporter>get_input_table_name</exporter>
<inputName>input</inputName>
</param>
<param name="inputTablePartitions">
<exporter>get_input_table_partitions</exporter>
<inputName>input</inputName>
</param>
<param name="labelColName" required="true">
<alias>labelCol</alias>
<exporter>get_label_column</exporter>
<inputName>input</inputName>
<docs>name of label column in input table</docs>
</param>
<param name="scoreColName" required="true">
<alias>scoreCol</alias>
<exporter>get_predicted_score_column</exporter>
<inputName>input</inputName>
</param>
<param name="groupColName">
<alias>groupCol</alias>
<inputName>input</inputName>
</param>
<param name="binCount">
</param>
<param name="outputMetricTableName">
<exporter>get_output_table_name</exporter>
<outputName>metric</outputName>
</param>
<param name="outputDetailTableName">
<exporter>get_output_table_name</exporter>
<outputName>detail</outputName>
</param>
<param name="positiveLabel">
<alias>goodValue</alias>
</param>
</params>
<ports>
<port name="input">
<ioType>INPUT</ioType>
<sequence>1</sequence>
<type>DATA</type>
<docs>train set with defined label</docs>
</port>
<port name="metric">
<ioType>OUTPUT</ioType>
<sequence>1</sequence>
<type>DATA</type>
<docs>trained model which can be used in prediction</docs>
</port>
<port name="detail">
<ioType>OUTPUT</ioType>
<sequence>2</sequence>
<type>DATA</type>
<docs>trained model which can be used in prediction</docs>
</port>
</ports>
<metas>
<meta name="xflowName" value="evaluate"/>
<meta name="xflowProjectName" value="algo_public"/>
<meta name="calculator" value="$package_root.metrics._customize.get_binary_class_eval_result"/>
</metas>
</algorithm>
<algorithm codeName="EvalMultiClass">
<exportFunction>true</exportFunction>
<params>
<param name="inputTableName" required="true">
<exporter>get_input_table_name</exporter>
<inputName>input</inputName>
</param>
<param name="inputTablePartitions">
<exporter>get_input_table_partitions</exporter>
<inputName>input</inputName>
</param>
<param name="labelColName" required="true">
<alias>labelCol</alias>
<exporter>get_label_column</exporter>
<inputName>input</inputName>
<docs>name of label column in input table</docs>
</param>
<param name="predictionColName" required="true">
<alias>predictCol</alias>
<exporter>get_predicted_class_column</exporter>
<inputName>input</inputName>
</param>
<param name="predictionDetailColName" required="true">
<alias>detailCol</alias>
<exporter>get_predicted_detail_column</exporter>
<inputName>input</inputName>
</param>
<param name="outputTableName">
<exporter>get_output_table_name</exporter>
<outputName>output</outputName>
</param>
</params>
<ports>
<port name="input">
<ioType>INPUT</ioType>
<sequence>1</sequence>
<type>DATA</type>
<docs>train set with defined label</docs>
</port>
<port name="output">
<ioType>OUTPUT</ioType>
<sequence>1</sequence>
<type>DATA</type>
<docs>trained model which can be used in prediction</docs>
</port>
</ports>
<metas>
<meta name="xflowName" value="MultiClassEvaluation"/>
<meta name="xflowProjectName" value="algo_public"/>
<meta name="calculator" value="$package_root.metrics._customize.get_multi_class_eval_result"/>
</metas>
</algorithm>
<algorithm codeName="EvalClustering">
<exportFunction>true</exportFunction>
<public>false</public>
<params>
<param name="inputTableName" required="true">
<exporter>get_input_table_name</exporter>
<inputName>input</inputName>
</param>
<param name="inputTablePartitions">
<exporter>get_input_table_partitions</exporter>
<inputName>input</inputName>
</param>
<param name="selectedColNames" required="true">
<alias>cols</alias>
<exporter>get_feature_columns</exporter>
<inputName>input</inputName>
<docs>name of feature columns in input table</docs>
</param>
<param name="outputTableName">
<exporter>get_output_table_name</exporter>
<outputName>output</outputName>
</param>
<param name="itemDelimiter">
<exporter>get_item_delimiter</exporter>
<inputName>input</inputName>
<docs>item(key value对)之间的分隔符</docs>
</param>
<param name="kvDelimiter">
<exporter>get_kv_delimiter</exporter>
<inputName>input</inputName>
<docs>表中每个item的key和value之间的分隔符</docs>
</param>
<param name="enableSparse">
<exporter>get_enable_sparse</exporter>
<inputName>input</inputName>
<docs>是否稀疏数据</docs>
</param>
<param name="modelName">
<exporter>get_input_model_name</exporter>
<inputName>model</inputName>
</param>
</params>
<ports>
<port name="input">
<ioType>INPUT</ioType>
<sequence>1</sequence>
<type>DATA</type>
<docs>train set with defined label</docs>
</port>
<port name="model">
<ioType>INPUT</ioType>
<sequence>2</sequence>
<type>MODEL</type>
<docs>model</docs>
</port>
<port name="output">
<ioType>OUTPUT</ioType>
<sequence>1</sequence>
<type>DATA</type>
<docs>trained model which can be used in prediction</docs>
</port>
</ports>
<metas>
<meta name="xflowName" value="cluster_evaluation"/>
<meta name="xflowProjectName" value="algo_public"/>
<meta name="calculator" value="$package_root.metrics._customize.get_clustering_eval_result"/>
</metas>
</algorithm>
</algorithms>