odps/static/algorithms/metrics.xml (350 lines of code) (raw):

<?xml version='1.0' encoding='UTF-8'?> <algorithms baseClass="BaseMetricsAlgorithm"> <algorithm codeName="ConfusionMatrix"> <exportFunction>true</exportFunction> <public>false</public> <params> <param name="inputTableName" required="true"> <exporter>get_input_table_name</exporter> <inputName>input</inputName> </param> <param name="inputTablePartitions"> <exporter>get_input_table_partitions</exporter> <inputName>input</inputName> </param> <param name="labelColName" required="true"> <alias>labelCol</alias> <exporter>get_label_column</exporter> <inputName>input</inputName> <docs>name of label column in input table</docs> </param> <param name="predictionColName" required="true"> <alias>predictCol</alias> <exporter>get_predicted_class_column</exporter> <inputName>model</inputName> </param> <param name="outputTableName"> <exporter>get_output_table_name</exporter> <outputName>output</outputName> </param> </params> <ports> <port name="input"> <ioType>INPUT</ioType> <sequence>1</sequence> <type>DATA</type> <docs>train set with defined label</docs> </port> <port name="output"> <ioType>OUTPUT</ioType> <sequence>1</sequence> <type>DATA</type> <docs>trained model which can be used in prediction</docs> </port> </ports> <metas> <meta name="xflowName" value="confusionmatrix"/> <meta name="xflowProjectName" value="algo_public"/> <meta name="calculator" value="$package_root.metrics._customize.get_confusion_matrix_result"/> </metas> </algorithm> <algorithm codeName="ROC"> <exportFunction>true</exportFunction> <public>false</public> <params> <param name="inputTableName" required="true"> <exporter>get_input_table_name</exporter> <inputName>input</inputName> </param> <param name="inputTablePartitions"> <exporter>get_input_table_partitions</exporter> <inputName>input</inputName> </param> <param name="labelColName" required="true"> <alias>labelCol</alias> <exporter>get_label_column</exporter> <inputName>input</inputName> <docs>name of label column in input table</docs> </param> <param name="goodValue"> </param> <param name="predictionColName" required="true"> <alias>predictCol</alias> <exporter>get_predicted_class_column</exporter> <inputName>model</inputName> </param> <param name="predictionScoreName" required="true"> <alias>scoreCol</alias> <exporter>get_predicted_score_column</exporter> <inputName>model</inputName> </param> <param name="outputTableName"> <exporter>get_output_table_name</exporter> <outputName>output</outputName> </param> </params> <ports> <port name="input"> <ioType>INPUT</ioType> <sequence>1</sequence> <type>DATA</type> <docs>train set with defined label</docs> </port> <port name="output"> <ioType>OUTPUT</ioType> <sequence>1</sequence> <type>DATA</type> <docs>trained model which can be used in prediction</docs> </port> </ports> <metas> <meta name="xflowName" value="roc"/> <meta name="xflowProjectName" value="algo_public"/> <meta name="calculator" value="$package_root.metrics._customize.get_roc_result"/> </metas> </algorithm> <algorithm codeName="EvalRegression"> <exportFunction>true</exportFunction> <public>false</public> <params> <param name="inputTableName" required="true"> <exporter>get_input_table_name</exporter> <inputName>input</inputName> </param> <param name="inputTablePartitions"> <exporter>get_input_table_partitions</exporter> <inputName>input</inputName> </param> <param name="yColName" required="true"> <alias>labelCol</alias> <exporter>get_label_column</exporter> <inputName>input</inputName> <docs>name of label column in input table</docs> </param> <param name="predictionColName" required="true"> <alias>predictCol</alias> <exporter>get_predicted_class_column</exporter> <inputName>model</inputName> </param> <param name="indexOutputTableName"> <exporter>get_output_table_name</exporter> <outputName>index</outputName> </param> <param name="residualOutputTableName"> <exporter>get_output_table_name</exporter> <outputName>residual</outputName> </param> </params> <ports> <port name="input"> <ioType>INPUT</ioType> <sequence>1</sequence> <type>DATA</type> <docs>train set with defined label</docs> </port> <port name="index"> <ioType>OUTPUT</ioType> <sequence>1</sequence> <type>DATA</type> <docs>trained model which can be used in prediction</docs> </port> <port name="residual"> <ioType>OUTPUT</ioType> <sequence>2</sequence> <type>DATA</type> <docs>trained model which can be used in prediction</docs> </port> </ports> <metas> <meta name="xflowName" value="regression_evaluation"/> <meta name="xflowProjectName" value="algo_public"/> <meta name="calculator" value="$package_root.metrics._customize.get_regression_eval_result"/> </metas> </algorithm> <algorithm codeName="EvalBinaryClass"> <exportFunction>true</exportFunction> <params> <param name="inputTableName" required="true"> <exporter>get_input_table_name</exporter> <inputName>input</inputName> </param> <param name="inputTablePartitions"> <exporter>get_input_table_partitions</exporter> <inputName>input</inputName> </param> <param name="labelColName" required="true"> <alias>labelCol</alias> <exporter>get_label_column</exporter> <inputName>input</inputName> <docs>name of label column in input table</docs> </param> <param name="scoreColName" required="true"> <alias>scoreCol</alias> <exporter>get_predicted_score_column</exporter> <inputName>input</inputName> </param> <param name="groupColName"> <alias>groupCol</alias> <inputName>input</inputName> </param> <param name="binCount"> </param> <param name="outputMetricTableName"> <exporter>get_output_table_name</exporter> <outputName>metric</outputName> </param> <param name="outputDetailTableName"> <exporter>get_output_table_name</exporter> <outputName>detail</outputName> </param> <param name="positiveLabel"> <alias>goodValue</alias> </param> </params> <ports> <port name="input"> <ioType>INPUT</ioType> <sequence>1</sequence> <type>DATA</type> <docs>train set with defined label</docs> </port> <port name="metric"> <ioType>OUTPUT</ioType> <sequence>1</sequence> <type>DATA</type> <docs>trained model which can be used in prediction</docs> </port> <port name="detail"> <ioType>OUTPUT</ioType> <sequence>2</sequence> <type>DATA</type> <docs>trained model which can be used in prediction</docs> </port> </ports> <metas> <meta name="xflowName" value="evaluate"/> <meta name="xflowProjectName" value="algo_public"/> <meta name="calculator" value="$package_root.metrics._customize.get_binary_class_eval_result"/> </metas> </algorithm> <algorithm codeName="EvalMultiClass"> <exportFunction>true</exportFunction> <params> <param name="inputTableName" required="true"> <exporter>get_input_table_name</exporter> <inputName>input</inputName> </param> <param name="inputTablePartitions"> <exporter>get_input_table_partitions</exporter> <inputName>input</inputName> </param> <param name="labelColName" required="true"> <alias>labelCol</alias> <exporter>get_label_column</exporter> <inputName>input</inputName> <docs>name of label column in input table</docs> </param> <param name="predictionColName" required="true"> <alias>predictCol</alias> <exporter>get_predicted_class_column</exporter> <inputName>input</inputName> </param> <param name="predictionDetailColName" required="true"> <alias>detailCol</alias> <exporter>get_predicted_detail_column</exporter> <inputName>input</inputName> </param> <param name="outputTableName"> <exporter>get_output_table_name</exporter> <outputName>output</outputName> </param> </params> <ports> <port name="input"> <ioType>INPUT</ioType> <sequence>1</sequence> <type>DATA</type> <docs>train set with defined label</docs> </port> <port name="output"> <ioType>OUTPUT</ioType> <sequence>1</sequence> <type>DATA</type> <docs>trained model which can be used in prediction</docs> </port> </ports> <metas> <meta name="xflowName" value="MultiClassEvaluation"/> <meta name="xflowProjectName" value="algo_public"/> <meta name="calculator" value="$package_root.metrics._customize.get_multi_class_eval_result"/> </metas> </algorithm> <algorithm codeName="EvalClustering"> <exportFunction>true</exportFunction> <public>false</public> <params> <param name="inputTableName" required="true"> <exporter>get_input_table_name</exporter> <inputName>input</inputName> </param> <param name="inputTablePartitions"> <exporter>get_input_table_partitions</exporter> <inputName>input</inputName> </param> <param name="selectedColNames" required="true"> <alias>cols</alias> <exporter>get_feature_columns</exporter> <inputName>input</inputName> <docs>name of feature columns in input table</docs> </param> <param name="outputTableName"> <exporter>get_output_table_name</exporter> <outputName>output</outputName> </param> <param name="itemDelimiter"> <exporter>get_item_delimiter</exporter> <inputName>input</inputName> <docs>item(key value对)之间的分隔符</docs> </param> <param name="kvDelimiter"> <exporter>get_kv_delimiter</exporter> <inputName>input</inputName> <docs>表中每个item的key和value之间的分隔符</docs> </param> <param name="enableSparse"> <exporter>get_enable_sparse</exporter> <inputName>input</inputName> <docs>是否稀疏数据</docs> </param> <param name="modelName"> <exporter>get_input_model_name</exporter> <inputName>model</inputName> </param> </params> <ports> <port name="input"> <ioType>INPUT</ioType> <sequence>1</sequence> <type>DATA</type> <docs>train set with defined label</docs> </port> <port name="model"> <ioType>INPUT</ioType> <sequence>2</sequence> <type>MODEL</type> <docs>model</docs> </port> <port name="output"> <ioType>OUTPUT</ioType> <sequence>1</sequence> <type>DATA</type> <docs>trained model which can be used in prediction</docs> </port> </ports> <metas> <meta name="xflowName" value="cluster_evaluation"/> <meta name="xflowProjectName" value="algo_public"/> <meta name="calculator" value="$package_root.metrics._customize.get_clustering_eval_result"/> </metas> </algorithm> </algorithms>