libheif/color-conversion/chroma_sampling.cc (633 lines of code) (raw):
/*
* HEIF codec.
* Copyright (c) 2023 Dirk Farin <dirk.farin@gmail.com>
*
* This file is part of libheif.
*
* libheif is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* libheif is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with libheif. If not, see <http://www.gnu.org/licenses/>.
*/
#include "chroma_sampling.h"
#include <cstring>
template<class Pixel>
std::vector<ColorStateWithCost>
Op_YCbCr444_to_YCbCr420_average<Pixel>::state_after_conversion(const ColorState& input_state,
const ColorState& target_state,
const heif_color_conversion_options& options) const
{
if (input_state.colorspace != heif_colorspace_YCbCr) {
return {};
}
if (input_state.chroma != heif_chroma_444) {
return {};
}
// this Op only implements the averaging algorithm
if (options.preferred_chroma_downsampling_algorithm != heif_chroma_downsampling_average) {
return {};
}
bool hdr = !std::is_same<Pixel, uint8_t>::value;
if ((input_state.bits_per_pixel != 8) != hdr) {
return {};
}
if (input_state.nclx_profile.get_matrix_coefficients() == 0) {
return {};
}
if (target_state.chroma != heif_chroma_420) {
return {};
}
std::vector<ColorStateWithCost> states;
ColorState output_state;
// --- convert to 4:2:0
output_state.colorspace = heif_colorspace_YCbCr;
output_state.chroma = heif_chroma_420;
output_state.has_alpha = input_state.has_alpha; // we simply keep the old alpha plane
output_state.bits_per_pixel = input_state.bits_per_pixel;
output_state.nclx_profile = input_state.nclx_profile;
states.push_back({output_state, SpeedCosts_Unoptimized});
return states;
}
template<class Pixel>
std::shared_ptr<HeifPixelImage>
Op_YCbCr444_to_YCbCr420_average<Pixel>::convert_colorspace(const std::shared_ptr<const HeifPixelImage>& input,
const ColorState& input_state,
const ColorState& target_state,
const heif_color_conversion_options& options) const
{
bool hdr = !std::is_same<Pixel, uint8_t>::value;
int bpp_y = input->get_bits_per_pixel(heif_channel_Y);
int bpp_cb = input->get_bits_per_pixel(heif_channel_Cb);
int bpp_cr = input->get_bits_per_pixel(heif_channel_Cr);
int bpp_a = 0;
bool has_alpha = input->has_channel(heif_channel_Alpha);
if (has_alpha) {
bpp_a = input->get_bits_per_pixel(heif_channel_Alpha);
}
if (!hdr) {
if (bpp_y != 8 ||
bpp_cb != 8 ||
bpp_cr != 8) {
return nullptr;
}
}
else {
if (bpp_y == 8 ||
bpp_cb == 8 ||
bpp_cr == 8) {
return nullptr;
}
}
if (bpp_y != bpp_cb ||
bpp_y != bpp_cr) {
// TODO: test with varying bit depths when we have a test image
return nullptr;
}
auto colorProfile = input->get_color_profile_nclx();
int width = input->get_width();
int height = input->get_height();
auto outimg = std::make_shared<HeifPixelImage>();
outimg->create(width, height, heif_colorspace_YCbCr, heif_chroma_420);
int cwidth = (width + 1) / 2;
int cheight = (height + 1) / 2;
if (!outimg->add_plane(heif_channel_Y, width, height, bpp_y) ||
!outimg->add_plane(heif_channel_Cb, cwidth, cheight, bpp_cb) ||
!outimg->add_plane(heif_channel_Cr, cwidth, cheight, bpp_cr)) {
return nullptr;
}
if (has_alpha) {
if (!outimg->add_plane(heif_channel_Alpha, width, height, bpp_a)) {
return nullptr;
}
}
const Pixel* in_y, * in_cb, * in_cr, * in_a;
int in_y_stride = 0, in_cb_stride = 0, in_cr_stride = 0, in_a_stride = 0;
Pixel* out_y, * out_cb, * out_cr, * out_a;
int out_y_stride = 0, out_cb_stride = 0, out_cr_stride = 0, out_a_stride = 0;
in_y = (const Pixel*) input->get_plane(heif_channel_Y, &in_y_stride);
in_cb = (const Pixel*) input->get_plane(heif_channel_Cb, &in_cb_stride);
in_cr = (const Pixel*) input->get_plane(heif_channel_Cr, &in_cr_stride);
out_y = (Pixel*) outimg->get_plane(heif_channel_Y, &out_y_stride);
out_cb = (Pixel*) outimg->get_plane(heif_channel_Cb, &out_cb_stride);
out_cr = (Pixel*) outimg->get_plane(heif_channel_Cr, &out_cr_stride);
if (has_alpha) {
in_a = (const Pixel*) input->get_plane(heif_channel_Alpha, &in_a_stride);
out_a = (Pixel*) outimg->get_plane(heif_channel_Alpha, &out_a_stride);
}
else {
in_a = nullptr;
out_a = nullptr;
}
if (hdr) {
in_y_stride /= 2;
in_cb_stride /= 2;
in_cr_stride /= 2;
in_a_stride /= 2;
out_y_stride /= 2;
out_cb_stride /= 2;
out_cr_stride /= 2;
out_a_stride /= 2;
}
// --- fill right and bottom borders if the image size is odd
if (height & 1) {
for (int x = 0; x < width - 1; x += 2) {
out_cb[(cheight - 1) * out_cb_stride + x / 2] = (Pixel) ((in_cb[(height - 1) * in_cb_stride + x] +
in_cb[(height - 1) * in_cb_stride + x + 1] + 1) / 2);
out_cr[(cheight - 1) * out_cr_stride + x / 2] = (Pixel) ((in_cr[(height - 1) * in_cr_stride + x] +
in_cr[(height - 1) * in_cr_stride + x + 1] + 1) / 2);
}
}
if (width & 1) {
for (int y = 0; y < height - 1; y += 2) {
out_cb[(y / 2) * out_cb_stride + cwidth - 1] = (Pixel) ((in_cb[(y + 0) * in_cb_stride + width - 1] +
in_cb[(y + 1) * in_cb_stride + width - 1] + 1) / 2);
out_cr[(y / 2) * out_cr_stride + cwidth - 1] = (Pixel) ((in_cr[(y + 0) * in_cr_stride + width - 1] +
in_cr[(y + 1) * in_cr_stride + width - 1] + 1) / 2);
}
}
if ((width & 1) && (height & 1)) {
out_cb[(cheight - 1) * out_cb_stride + cwidth - 1] = in_cb[(height - 1) * in_cb_stride + width - 1];
out_cr[(cheight - 1) * out_cr_stride + cwidth - 1] = in_cr[(height - 1) * in_cr_stride + width - 1];
}
// --- averaging filter
int x, y;
for (y = 0; y < height - 1; y += 2) {
for (x = 0; x < width - 1; x += 2) {
Pixel cb00 = in_cb[y * in_cb_stride + x];
Pixel cr00 = in_cr[y * in_cr_stride + x];
Pixel cb01 = in_cb[y * in_cb_stride + x + 1];
Pixel cr01 = in_cr[y * in_cr_stride + x + 1];
Pixel cb10 = in_cb[(y + 1) * in_cb_stride + x];
Pixel cr10 = in_cr[(y + 1) * in_cr_stride + x];
Pixel cb11 = in_cb[(y + 1) * in_cb_stride + x + 1];
Pixel cr11 = in_cr[(y + 1) * in_cr_stride + x + 1];
out_cb[(y / 2) * out_cb_stride + x / 2] = (Pixel) ((cb00 + cb01 + cb10 + cb11 + 2) / 4);
out_cr[(y / 2) * out_cr_stride + x / 2] = (Pixel) ((cr00 + cr01 + cr10 + cr11 + 2) / 4);
}
}
// TODO: check whether we can use HeifPixelImage::transfer_plane_from_image_as() instead of copying Y and Alpha
for (y = 0; y < height; y++) {
int copyWidth = (hdr ? width * 2 : width);
memcpy(&out_y[y * out_y_stride], &in_y[y * in_y_stride], copyWidth);
if (has_alpha) {
memcpy(&out_a[y * out_a_stride], &in_a[y * in_a_stride], copyWidth);
}
}
return outimg;
}
template class Op_YCbCr444_to_YCbCr420_average<uint8_t>;
template class Op_YCbCr444_to_YCbCr420_average<uint16_t>;
template<class Pixel>
std::vector<ColorStateWithCost>
Op_YCbCr444_to_YCbCr422_average<Pixel>::state_after_conversion(const ColorState& input_state,
const ColorState& target_state,
const heif_color_conversion_options& options) const
{
if (input_state.colorspace != heif_colorspace_YCbCr) {
return {};
}
if (input_state.chroma != heif_chroma_444) {
return {};
}
// this Op only implements the averaging algorithm
if (options.preferred_chroma_downsampling_algorithm != heif_chroma_downsampling_average) {
return {};
}
bool hdr = !std::is_same<Pixel, uint8_t>::value;
if ((input_state.bits_per_pixel != 8) != hdr) {
return {};
}
if (input_state.nclx_profile.get_matrix_coefficients() == 0) {
return {};
}
if (target_state.chroma != heif_chroma_422) {
return {};
}
std::vector<ColorStateWithCost> states;
ColorState output_state;
// --- convert to 4:2:0
output_state.colorspace = heif_colorspace_YCbCr;
output_state.chroma = heif_chroma_422;
output_state.has_alpha = input_state.has_alpha; // we simply keep the old alpha plane
output_state.bits_per_pixel = input_state.bits_per_pixel;
output_state.nclx_profile = input_state.nclx_profile;
states.push_back({output_state, SpeedCosts_Unoptimized});
return states;
}
template<class Pixel>
std::shared_ptr<HeifPixelImage>
Op_YCbCr444_to_YCbCr422_average<Pixel>::convert_colorspace(const std::shared_ptr<const HeifPixelImage>& input,
const ColorState& input_state,
const ColorState& target_state,
const heif_color_conversion_options& options) const
{
bool hdr = !std::is_same<Pixel, uint8_t>::value;
int bpp_y = input->get_bits_per_pixel(heif_channel_Y);
int bpp_cb = input->get_bits_per_pixel(heif_channel_Cb);
int bpp_cr = input->get_bits_per_pixel(heif_channel_Cr);
int bpp_a = 0;
bool has_alpha = input->has_channel(heif_channel_Alpha);
if (has_alpha) {
bpp_a = input->get_bits_per_pixel(heif_channel_Alpha);
}
if (!hdr) {
if (bpp_y != 8 ||
bpp_cb != 8 ||
bpp_cr != 8) {
return nullptr;
}
}
else {
if (bpp_y == 8 ||
bpp_cb == 8 ||
bpp_cr == 8) {
return nullptr;
}
}
if (bpp_y != bpp_cb ||
bpp_y != bpp_cr) {
// TODO: test with varying bit depths when we have a test image
return nullptr;
}
auto colorProfile = input->get_color_profile_nclx();
int width = input->get_width();
int height = input->get_height();
auto outimg = std::make_shared<HeifPixelImage>();
outimg->create(width, height, heif_colorspace_YCbCr, heif_chroma_422);
int cwidth = (width + 1) / 2;
int cheight = height;
if (!outimg->add_plane(heif_channel_Y, width, height, bpp_y) ||
!outimg->add_plane(heif_channel_Cb, cwidth, cheight, bpp_cb) ||
!outimg->add_plane(heif_channel_Cr, cwidth, cheight, bpp_cr)) {
return nullptr;
}
if (has_alpha) {
if (!outimg->add_plane(heif_channel_Alpha, width, height, bpp_a)) {
return nullptr;
}
}
const Pixel* in_y, * in_cb, * in_cr, * in_a;
int in_y_stride = 0, in_cb_stride = 0, in_cr_stride = 0, in_a_stride = 0;
Pixel* out_y, * out_cb, * out_cr, * out_a;
int out_y_stride = 0, out_cb_stride = 0, out_cr_stride = 0, out_a_stride = 0;
in_y = (const Pixel*) input->get_plane(heif_channel_Y, &in_y_stride);
in_cb = (const Pixel*) input->get_plane(heif_channel_Cb, &in_cb_stride);
in_cr = (const Pixel*) input->get_plane(heif_channel_Cr, &in_cr_stride);
out_y = (Pixel*) outimg->get_plane(heif_channel_Y, &out_y_stride);
out_cb = (Pixel*) outimg->get_plane(heif_channel_Cb, &out_cb_stride);
out_cr = (Pixel*) outimg->get_plane(heif_channel_Cr, &out_cr_stride);
if (has_alpha) {
in_a = (const Pixel*) input->get_plane(heif_channel_Alpha, &in_a_stride);
out_a = (Pixel*) outimg->get_plane(heif_channel_Alpha, &out_a_stride);
}
else {
in_a = nullptr;
out_a = nullptr;
}
if (hdr) {
in_y_stride /= 2;
in_cb_stride /= 2;
in_cr_stride /= 2;
in_a_stride /= 2;
out_y_stride /= 2;
out_cb_stride /= 2;
out_cr_stride /= 2;
out_a_stride /= 2;
}
// --- fill right border if the image size is odd
if (width & 1) {
for (int y = 0; y < height - 1; y++) {
out_cb[y * out_cb_stride + cwidth - 1] = (Pixel) in_cb[y * in_cb_stride + width - 1];
out_cr[y * out_cr_stride + cwidth - 1] = (Pixel) in_cr[y * in_cr_stride + width - 1];
}
}
// --- averaging filter
int x, y;
for (y = 0; y < height; y++) {
for (x = 0; x < width - 1; x += 2) {
Pixel cb00 = in_cb[y * in_cb_stride + x];
Pixel cr00 = in_cr[y * in_cr_stride + x];
Pixel cb01 = in_cb[y * in_cb_stride + x + 1];
Pixel cr01 = in_cr[y * in_cr_stride + x + 1];
out_cb[y * out_cb_stride + x / 2] = (Pixel) ((cb00 + cb01 + 1) / 2);
out_cr[y * out_cr_stride + x / 2] = (Pixel) ((cr00 + cr01 + 1) / 2);
}
}
// TODO: check whether we can use HeifPixelImage::transfer_plane_from_image_as() instead of copying Y and Alpha
for (y = 0; y < height; y++) {
int copyWidth = (hdr ? width * 2 : width);
memcpy(&out_y[y * out_y_stride], &in_y[y * in_y_stride], copyWidth);
if (has_alpha) {
memcpy(&out_a[y * out_a_stride], &in_a[y * in_a_stride], copyWidth);
}
}
return outimg;
}
template class Op_YCbCr444_to_YCbCr422_average<uint8_t>;
template class Op_YCbCr444_to_YCbCr422_average<uint16_t>;
template<class Pixel>
std::vector<ColorStateWithCost>
Op_YCbCr420_bilinear_to_YCbCr444<Pixel>::state_after_conversion(const ColorState& input_state,
const ColorState& target_state,
const heif_color_conversion_options& options) const
{
if (input_state.colorspace != heif_colorspace_YCbCr) {
return {};
}
if (input_state.chroma != heif_chroma_420) {
return {};
}
// this Op only implements the bilinear algorithm
if (options.preferred_chroma_upsampling_algorithm != heif_chroma_upsampling_bilinear) {
return {};
}
bool hdr = !std::is_same<Pixel, uint8_t>::value;
if ((input_state.bits_per_pixel != 8) != hdr) {
return {};
}
if (input_state.nclx_profile.get_matrix_coefficients() == 0) {
return {};
}
std::vector<ColorStateWithCost> states;
ColorState output_state;
// --- convert to 4:4:4
output_state.colorspace = heif_colorspace_YCbCr;
output_state.chroma = heif_chroma_444;
output_state.has_alpha = input_state.has_alpha; // we simply keep the old alpha plane
output_state.bits_per_pixel = input_state.bits_per_pixel;
output_state.nclx_profile = input_state.nclx_profile;
states.push_back({output_state, SpeedCosts_Unoptimized});
return states;
}
template<class Pixel>
std::shared_ptr<HeifPixelImage>
Op_YCbCr420_bilinear_to_YCbCr444<Pixel>::convert_colorspace(const std::shared_ptr<const HeifPixelImage>& input,
const ColorState& input_state,
const ColorState& target_state,
const heif_color_conversion_options& options) const
{
bool hdr = !std::is_same<Pixel, uint8_t>::value;
int bpp_y = input->get_bits_per_pixel(heif_channel_Y);
int bpp_cb = input->get_bits_per_pixel(heif_channel_Cb);
int bpp_cr = input->get_bits_per_pixel(heif_channel_Cr);
int bpp_a = 0;
bool has_alpha = input->has_channel(heif_channel_Alpha);
if (has_alpha) {
bpp_a = input->get_bits_per_pixel(heif_channel_Alpha);
}
if (!hdr) {
if (bpp_y != 8 ||
bpp_cb != 8 ||
bpp_cr != 8) {
return nullptr;
}
}
else {
if (bpp_y == 8 ||
bpp_cb == 8 ||
bpp_cr == 8) {
return nullptr;
}
}
if (bpp_y != bpp_cb ||
bpp_y != bpp_cr) {
// TODO: test with varying bit depths when we have a test image
return nullptr;
}
auto colorProfile = input->get_color_profile_nclx();
int width = input->get_width();
int height = input->get_height();
auto outimg = std::make_shared<HeifPixelImage>();
outimg->create(width, height, heif_colorspace_YCbCr, heif_chroma_444);
if (!outimg->add_plane(heif_channel_Y, width, height, bpp_y) ||
!outimg->add_plane(heif_channel_Cb, width, height, bpp_cb) ||
!outimg->add_plane(heif_channel_Cr, width, height, bpp_cr)) {
return nullptr;
}
if (has_alpha) {
if (!outimg->add_plane(heif_channel_Alpha, width, height, bpp_a)) {
return nullptr;
}
}
const Pixel* in_y, * in_cb, * in_cr, * in_a;
int in_y_stride = 0, in_cb_stride = 0, in_cr_stride = 0, in_a_stride = 0;
Pixel* out_y, * out_cb, * out_cr, * out_a;
int out_y_stride = 0, out_cb_stride = 0, out_cr_stride = 0, out_a_stride = 0;
in_y = (const Pixel*) input->get_plane(heif_channel_Y, &in_y_stride);
in_cb = (const Pixel*) input->get_plane(heif_channel_Cb, &in_cb_stride);
in_cr = (const Pixel*) input->get_plane(heif_channel_Cr, &in_cr_stride);
out_y = (Pixel*) outimg->get_plane(heif_channel_Y, &out_y_stride);
out_cb = (Pixel*) outimg->get_plane(heif_channel_Cb, &out_cb_stride);
out_cr = (Pixel*) outimg->get_plane(heif_channel_Cr, &out_cr_stride);
if (has_alpha) {
in_a = (const Pixel*) input->get_plane(heif_channel_Alpha, &in_a_stride);
out_a = (Pixel*) outimg->get_plane(heif_channel_Alpha, &out_a_stride);
}
else {
in_a = nullptr;
out_a = nullptr;
}
if (hdr) {
in_y_stride /= 2;
in_cb_stride /= 2;
in_cr_stride /= 2;
in_a_stride /= 2;
out_y_stride /= 2;
out_cb_stride /= 2;
out_cr_stride /= 2;
out_a_stride /= 2;
}
/*
* We assume that chroma pixels are located in the center of 2x2 luma pixels.
* The image border 'b' is handled separately.
* The right and bottom border are not processed when the size is odd.
* Then, each 2x2 square between 4 chroma samples is computed in one iteration.
*
* Upsampling weights are 3/4, 1/4. For example:
* A = 3/4*3/4 * C1 + 3/4*1/4 * C2 + 1/4*3/4 * C3 + 1/4*1/4 * C4
*
* +---+---+---+---+
* | b | b | b | b |
* +---C1--+---C2--+
* | b | A | | b |
* +---+---+---+---+
* | b | | | b |
* +---C3--+---C4--+
* | b | b | b | b |
* +---+---+---+---+
*/
// --- fill borders
// top left corner
out_cb[0] = in_cb[0];
out_cr[0] = in_cr[0];
// top border
for (int cx = 0; cx < (width - 1) / 2; cx++) {
out_cb[0 * out_cb_stride + 2 * cx + 1] = (Pixel) ((3 * in_cb[cx / 2] + 1 * in_cb[cx / 2 + 1] + 2) / 4);
out_cb[0 * out_cb_stride + 2 * cx + 2] = (Pixel) ((1 * in_cb[cx / 2] + 3 * in_cb[cx / 2 + 1] + 2) / 4);
out_cr[0 * out_cr_stride + 2 * cx + 1] = (Pixel) ((3 * in_cr[cx / 2] + 1 * in_cr[cx / 2 + 1] + 2) / 4);
out_cr[0 * out_cr_stride + 2 * cx + 2] = (Pixel) ((1 * in_cr[cx / 2] + 3 * in_cr[cx / 2 + 1] + 2) / 4);
}
// top right corner
if (width % 2 == 0) {
out_cb[width - 1] = in_cb[width / 2 - 1];
out_cr[width - 1] = in_cr[width / 2 - 1];
}
// left border
for (int cy = 0; cy < (height - 1) / 2; cy++) {
out_cb[(2 * cy + 1) * out_cb_stride + 0] = (Pixel) ((3 * in_cb[cy / 2 * in_cb_stride] + 1 * in_cb[(cy / 2 + 1) * in_cb_stride] + 2) / 4);
out_cb[(2 * cy + 2) * out_cb_stride + 0] = (Pixel) ((1 * in_cb[cy / 2 * in_cb_stride] + 3 * in_cb[(cy / 2 + 1) * in_cb_stride] + 2) / 4);
out_cr[(2 * cy + 1) * out_cr_stride + 0] = (Pixel) ((3 * in_cr[cy / 2 * in_cr_stride] + 1 * in_cr[(cy / 2 + 1) * in_cr_stride] + 2) / 4);
out_cr[(2 * cy + 2) * out_cr_stride + 0] = (Pixel) ((1 * in_cr[cy / 2 * in_cr_stride] + 3 * in_cr[(cy / 2 + 1) * in_cr_stride] + 2) / 4);
}
// bottom left corner
if (height % 2 == 0) {
out_cb[(height - 1) * out_cb_stride] = in_cb[(height / 2 - 1) * in_cb_stride];
out_cr[(height - 1) * out_cr_stride] = in_cr[(height / 2 - 1) * in_cr_stride];
}
// right border
if (width % 2 == 0) {
for (int cy = 0; cy < (height - 1) / 2; cy++) {
out_cb[(2 * cy + 1) * out_cb_stride + width - 1] = (Pixel) ((3 * in_cb[cy / 2 * in_cb_stride + width / 2 - 1] + 1 * in_cb[(cy / 2 + 1) * in_cb_stride + width / 2 - 1] + 2) / 4);
out_cb[(2 * cy + 2) * out_cb_stride + width - 1] = (Pixel) ((1 * in_cb[cy / 2 * in_cb_stride + width / 2 - 1] + 3 * in_cb[(cy / 2 + 1) * in_cb_stride + width / 2 - 1] + 2) / 4);
out_cr[(2 * cy + 1) * out_cr_stride + width - 1] = (Pixel) ((3 * in_cr[cy / 2 * in_cr_stride + width / 2 - 1] + 1 * in_cr[(cy / 2 + 1) * in_cr_stride + width / 2 - 1] + 2) / 4);
out_cr[(2 * cy + 2) * out_cr_stride + width - 1] = (Pixel) ((1 * in_cr[cy / 2 * in_cr_stride + width / 2 - 1] + 3 * in_cr[(cy / 2 + 1) * in_cr_stride + width / 2 - 1] + 2) / 4);
}
}
// bottom border
if (height % 2 == 0) {
for (int cx = 0; cx < (width - 1) / 2; cx++) {
out_cb[(height - 1) * out_cb_stride + 2 * cx + 1] = (Pixel) ((3 * in_cb[(height / 2 - 1) * in_cb_stride + cx / 2] + 1 * in_cb[(height / 2 - 1) * in_cb_stride + cx / 2 + 1] + 2) / 4);
out_cb[(height - 1) * out_cb_stride + 2 * cx + 2] = (Pixel) ((1 * in_cb[(height / 2 - 1) * in_cb_stride + cx / 2] + 3 * in_cb[(height / 2 - 1) * in_cb_stride + cx / 2 + 1] + 2) / 4);
out_cr[(height - 1) * out_cr_stride + 2 * cx + 1] = (Pixel) ((3 * in_cr[(height / 2 - 1) * in_cr_stride + cx / 2] + 1 * in_cr[(height / 2 - 1) * in_cr_stride + cx / 2 + 1] + 2) / 4);
out_cr[(height - 1) * out_cr_stride + 2 * cx + 2] = (Pixel) ((1 * in_cr[(height / 2 - 1) * in_cr_stride + cx / 2] + 3 * in_cr[(height / 2 - 1) * in_cr_stride + cx / 2 + 1] + 2) / 4);
}
}
// bottom right corner
if (width % 2 == 0 && height % 2 == 0) {
out_cb[(height - 1) * out_cb_stride + width - 1] = in_cb[(height / 2 - 1) * in_cb_stride + width / 2 - 1];
out_cr[(height - 1) * out_cr_stride + width - 1] = in_cr[(height / 2 - 1) * in_cr_stride + width / 2 - 1];
}
// --- bilinear filtering of inner part
int x, y;
for (y = 1; y < height - 1; y += 2) {
for (x = 1; x < width - 1; x += 2) {
int cx = x / 2;
int cy = y / 2;
Pixel cb00 = in_cb[cy * in_cb_stride + cx];
Pixel cr00 = in_cr[cy * in_cr_stride + cx];
Pixel cb01 = in_cb[cy * in_cb_stride + cx + 1];
Pixel cr01 = in_cr[cy * in_cr_stride + cx + 1];
Pixel cb10 = in_cb[(cy + 1) * in_cb_stride + cx];
Pixel cr10 = in_cr[(cy + 1) * in_cr_stride + cx];
Pixel cb11 = in_cb[(cy + 1) * in_cb_stride + cx + 1];
Pixel cr11 = in_cr[(cy + 1) * in_cr_stride + cx + 1];
out_cb[(y + 0) * out_cb_stride + x + 0] = (Pixel) ((cb00 * 3 * 3 + cb01 * 1 * 3 + cb10 * 3 * 1 + cb11 * 1 * 1 + 8) / 16);
out_cb[(y + 0) * out_cb_stride + x + 1] = (Pixel) ((cb00 * 1 * 3 + cb01 * 3 * 3 + cb10 * 1 * 1 + cb11 * 3 * 1 + 8) / 16);
out_cb[(y + 1) * out_cb_stride + x + 0] = (Pixel) ((cb00 * 3 * 1 + cb01 * 1 * 1 + cb10 * 3 * 3 + cb11 * 1 * 3 + 8) / 16);
out_cb[(y + 1) * out_cb_stride + x + 1] = (Pixel) ((cb00 * 1 * 1 + cb01 * 3 * 1 + cb10 * 1 * 3 + cb11 * 3 * 3 + 8) / 16);
out_cr[(y + 0) * out_cr_stride + x + 0] = (Pixel) ((cr00 * 3 * 3 + cr01 * 1 * 3 + cr10 * 3 * 1 + cr11 * 1 * 1 + 8) / 16);
out_cr[(y + 0) * out_cr_stride + x + 1] = (Pixel) ((cr00 * 1 * 3 + cr01 * 3 * 3 + cr10 * 1 * 1 + cr11 * 3 * 1 + 8) / 16);
out_cr[(y + 1) * out_cr_stride + x + 0] = (Pixel) ((cr00 * 3 * 1 + cr01 * 1 * 1 + cr10 * 3 * 3 + cr11 * 1 * 3 + 8) / 16);
out_cr[(y + 1) * out_cr_stride + x + 1] = (Pixel) ((cr00 * 1 * 1 + cr01 * 3 * 1 + cr10 * 1 * 3 + cr11 * 3 * 3 + 8) / 16);
}
}
// TODO: check whether we can use HeifPixelImage::transfer_plane_from_image_as() instead of copying Y and Alpha
for (y = 0; y < height; y++) {
int copyWidth = (hdr ? width * 2 : width);
memcpy(&out_y[y * out_y_stride], &in_y[y * in_y_stride], copyWidth);
if (has_alpha) {
memcpy(&out_a[y * out_a_stride], &in_a[y * in_a_stride], copyWidth);
}
}
return outimg;
}
template class Op_YCbCr420_bilinear_to_YCbCr444<uint8_t>;
template class Op_YCbCr420_bilinear_to_YCbCr444<uint16_t>;
template<class Pixel>
std::vector<ColorStateWithCost>
Op_YCbCr422_bilinear_to_YCbCr444<Pixel>::state_after_conversion(const ColorState& input_state,
const ColorState& target_state,
const heif_color_conversion_options& options) const
{
if (input_state.colorspace != heif_colorspace_YCbCr) {
return {};
}
if (input_state.chroma != heif_chroma_422) {
return {};
}
// this Op only implements the bilinear algorithm
if (options.preferred_chroma_upsampling_algorithm != heif_chroma_upsampling_bilinear) {
return {};
}
bool hdr = !std::is_same<Pixel, uint8_t>::value;
if ((input_state.bits_per_pixel != 8) != hdr) {
return {};
}
if (input_state.nclx_profile.get_matrix_coefficients() == 0) {
return {};
}
std::vector<ColorStateWithCost> states;
ColorState output_state;
// --- convert to 4:4:4
output_state.colorspace = heif_colorspace_YCbCr;
output_state.chroma = heif_chroma_444;
output_state.has_alpha = input_state.has_alpha; // we simply keep the old alpha plane
output_state.bits_per_pixel = input_state.bits_per_pixel;
output_state.nclx_profile = input_state.nclx_profile;
states.push_back({output_state, SpeedCosts_Unoptimized});
return states;
}
template<class Pixel>
std::shared_ptr<HeifPixelImage>
Op_YCbCr422_bilinear_to_YCbCr444<Pixel>::convert_colorspace(const std::shared_ptr<const HeifPixelImage>& input,
const ColorState& input_state,
const ColorState& target_state,
const heif_color_conversion_options& options) const
{
bool hdr = !std::is_same<Pixel, uint8_t>::value;
int bpp_y = input->get_bits_per_pixel(heif_channel_Y);
int bpp_cb = input->get_bits_per_pixel(heif_channel_Cb);
int bpp_cr = input->get_bits_per_pixel(heif_channel_Cr);
int bpp_a = 0;
bool has_alpha = input->has_channel(heif_channel_Alpha);
if (has_alpha) {
bpp_a = input->get_bits_per_pixel(heif_channel_Alpha);
}
if (!hdr) {
if (bpp_y != 8 ||
bpp_cb != 8 ||
bpp_cr != 8) {
return nullptr;
}
}
else {
if (bpp_y == 8 ||
bpp_cb == 8 ||
bpp_cr == 8) {
return nullptr;
}
}
if (bpp_y != bpp_cb ||
bpp_y != bpp_cr) {
// TODO: test with varying bit depths when we have a test image
return nullptr;
}
auto colorProfile = input->get_color_profile_nclx();
int width = input->get_width();
int height = input->get_height();
auto outimg = std::make_shared<HeifPixelImage>();
outimg->create(width, height, heif_colorspace_YCbCr, heif_chroma_444);
if (!outimg->add_plane(heif_channel_Y, width, height, bpp_y) ||
!outimg->add_plane(heif_channel_Cb, width, height, bpp_cb) ||
!outimg->add_plane(heif_channel_Cr, width, height, bpp_cr)) {
return nullptr;
}
if (has_alpha) {
if (!outimg->add_plane(heif_channel_Alpha, width, height, bpp_a)) {
return nullptr;
}
}
const Pixel* in_y, * in_cb, * in_cr, * in_a;
int in_y_stride = 0, in_cb_stride = 0, in_cr_stride = 0, in_a_stride = 0;
Pixel* out_y, * out_cb, * out_cr, * out_a;
int out_y_stride = 0, out_cb_stride = 0, out_cr_stride = 0, out_a_stride = 0;
in_y = (const Pixel*) input->get_plane(heif_channel_Y, &in_y_stride);
in_cb = (const Pixel*) input->get_plane(heif_channel_Cb, &in_cb_stride);
in_cr = (const Pixel*) input->get_plane(heif_channel_Cr, &in_cr_stride);
out_y = (Pixel*) outimg->get_plane(heif_channel_Y, &out_y_stride);
out_cb = (Pixel*) outimg->get_plane(heif_channel_Cb, &out_cb_stride);
out_cr = (Pixel*) outimg->get_plane(heif_channel_Cr, &out_cr_stride);
if (has_alpha) {
in_a = (const Pixel*) input->get_plane(heif_channel_Alpha, &in_a_stride);
out_a = (Pixel*) outimg->get_plane(heif_channel_Alpha, &out_a_stride);
}
else {
in_a = nullptr;
out_a = nullptr;
}
if (hdr) {
in_y_stride /= 2;
in_cb_stride /= 2;
in_cr_stride /= 2;
in_a_stride /= 2;
out_y_stride /= 2;
out_cb_stride /= 2;
out_cr_stride /= 2;
out_a_stride /= 2;
}
/*
* We assume that chroma pixels are located in the center of 2x1 luma pixels.
* The image border 'b' is handled separately.
* The right border is not processed when the size is odd.
*
* Upsampling weights are 3/4, 1/4. For example:
* A = 3/4 * X + 1/4 * Y
*
* X,Y,Z are the chroma samples
*
* +---+---+---+---+
* | b X A | B Y b | even image width
* +---+---+---+---+
*
* +---+---+---+---+---+
* | b X A | B Y b | b Z odd image width
* +---+---+---+---+---+
*/
// --- fill borders
// left border
for (int cy = 0; cy < height; cy++) {
out_cb[cy * out_cb_stride] = in_cb[cy * in_cb_stride];
out_cr[cy * out_cr_stride] = in_cr[cy * in_cr_stride];
}
// right border
if (width % 2 == 0) {
for (int cy = 0; cy < height; cy++) {
out_cb[cy * out_cb_stride + width - 1] = in_cb[cy * in_cb_stride + width / 2 - 1];
out_cr[cy * out_cr_stride + width - 1] = in_cr[cy * in_cr_stride + width / 2 - 1];
}
}
// --- bilinear filtering of inner part
int x, y;
for (y = 0; y < height; y++) {
for (x = 1; x < width - 1; x += 2) {
int cx = x / 2;
Pixel cb00 = in_cb[y * in_cb_stride + cx];
Pixel cr00 = in_cr[y * in_cr_stride + cx];
Pixel cb01 = in_cb[y * in_cb_stride + cx + 1];
Pixel cr01 = in_cr[y * in_cr_stride + cx + 1];
out_cb[y * out_cb_stride + x + 0] = (Pixel) ((cb00 * 3 + cb01 * 1 + 2) / 4);
out_cb[y * out_cb_stride + x + 1] = (Pixel) ((cb00 * 1 + cb01 * 3 + 2) / 4);
out_cr[y * out_cr_stride + x + 0] = (Pixel) ((cr00 * 3 + cr01 * 1 + 2) / 4);
out_cr[y * out_cr_stride + x + 1] = (Pixel) ((cr00 * 1 + cr01 * 3 + 2) / 4);
}
}
// TODO: check whether we can use HeifPixelImage::transfer_plane_from_image_as() instead of copying Y and Alpha
for (y = 0; y < height; y++) {
int copyWidth = (hdr ? width * 2 : width);
memcpy(&out_y[y * out_y_stride], &in_y[y * in_y_stride], copyWidth);
if (has_alpha) {
memcpy(&out_a[y * out_a_stride], &in_a[y * in_a_stride], copyWidth);
}
}
return outimg;
}
template class Op_YCbCr422_bilinear_to_YCbCr444<uint8_t>;
template class Op_YCbCr422_bilinear_to_YCbCr444<uint16_t>;