analysis/bw_analysis.py (63 lines of code) (raw):
import os
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.offline as offline
import plotly.graph_objects as go
import sys
curr_work_path = os.path.dirname(__file__)
file_name = sys.argv[1]
file_path = curr_work_path + "/../simulation/monitor_output/" + file_name + ".txt"
if os.path.exists(curr_work_path+'/../simulation/monitor_output/figs/'+file_name) == False:
os.mkdir(curr_work_path+'/../simulation/monitor_output/figs/'+file_name)
all_data = pd.read_table(file_path, sep=', ', engine='python')
node_id_scale = all_data['node_id'].value_counts().sort_index()
node_start_id = node_id_scale.index[0]
def get_data(node_id : int):
data = all_data[all_data['node_id'] == node_id]
return data
def get_bw_list(tx_bytes_diff, interval):
bw_list = [x*1e9/interval for x in tx_bytes_diff] # B/s
bw_list = [x*8 / 1e9 for x in bw_list] # Gbps
# bw_list = map(lambda x : x*1e9/interval, tx_bytes_diff)
return bw_list
# this function is used for monitor recording tx_bytes.
def get_fig_for_node(node_id):
# get data of node
data = get_data(int(node_id))
# group data by port
groups = data.groupby('port_id')
port_bw = {}
# plot for every port in node
fig = px.line()
lables=[]
for key, df in groups:
lables.append('port-'+ str(key))
df = df.reset_index(drop=True)
interval = df['time'][1]-df['time'][0] # ns
df['time'] = df['time'].map(lambda x : x/1e6)
tx_list = list(df['tx_bytes'])
nxt_tx = list(df['tx_bytes'])
nxt_tx.pop(0)
nxt_tx.append(tx_list[-1])
diff = [nxt_tx[i] - tx_list[i] for i in range(len(tx_list))]
bw_list = get_bw_list(diff, interval)
df['bw'] = pd.DataFrame(bw_list)
fig.add_scatter(x=df['time'],y=df['bw'], name='port-'+str(key))
fig.update_layout(title='Node-'+str(node_id)+'-throughput', xaxis_title='time(ms)', yaxis_title='Throughput(Gbps)')
offline.plot(fig, filename=curr_work_path+'/../simulation/monitor_output/figs/'+file_name+'/bw_node_'+str(node_id)+'.html')
# fig.show()
# this function is used for monitor recording bandwidth.
def get_fig_for_node_bw(node_id):
# get data of node
data = get_data(int(node_id))
# group data by port
groups = data.groupby('port_id')
port_bw = {}
# plot for every port in node
fig = px.line()
lables=[]
for key, df in groups:
lables.append('port-'+ str(key))
df = df.reset_index(drop=True)
df['time'] = df['time'].map(lambda x : x/1e6) # ms
fig.add_scatter(x=df['time'],y=df['bandwidth'], name='port-'+str(key))
fig.update_layout(title='Node-'+str(node_id)+'-throughput', xaxis_title='time(ms)', yaxis_title='Throughput(Gbps)')
offline.plot(fig, filename=curr_work_path+'/../simulation/monitor_output/figs/'+file_name+'/bw_node_'+str(node_id)+'.html')
if __name__ == "__main__":
for i in range(len(node_id_scale)):
print("get fig for node: "+str(i+node_start_id))
get_fig_for_node_bw(i+node_start_id)
# if __name__ == "__main__":
# # get data of node
# data = get_data(int(node_id))
# # group data by port
# groups = data.groupby('port_id')
# port_bw = {}
# # plot for every port in node
# plt.figure(figsize=(9,6))
# lables=[]
# for key, df in groups:
# lables.append('port-'+ str(key))
# df = df.reset_index(drop=True)
# time = list(df['time'])
# interval = time[1]-time[0] # ns
# time = [t / 1e6 for t in time] # ms
# tx_list = list(df['tx_bytes'])
# nxt_tx = list(df['tx_bytes'])
# nxt_tx.pop(0)
# nxt_tx.append(tx_list[-1])
# diff = [nxt_tx[i] - tx_list[i] for i in range(len(tx_list))]
# bw_list = get_bw_list(diff, interval)
# # print(nxt_tx)
# # print(tx_list)
# # print(diff)
# # print(bw_list)
# plt.plot(time, bw_list)
# plt.xlabel("Time(ms)")
# plt.ylabel("Througput(Gbps)")
# plt.legend(lables)
# plt.savefig("/home/xuemo.lc/AliLMN-Sim/figs/" + fig_name)
# plt.show()