analysis/qlen_analysis.py (45 lines of code) (raw):

import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import plotly.express as px import plotly.offline as offline import plotly.graph_objects as go import sys curr_work_path = os.path.dirname(__file__) file_name = sys.argv[1] file_path = curr_work_path + "/../simulation/monitor_output/" + file_name + ".txt" if os.path.exists(curr_work_path+'/../simulation/monitor_output/figs/'+file_name) == False: os.mkdir(curr_work_path+'/../simulation/monitor_output/figs/'+file_name) all_data = pd.read_table(file_path, sep=', ', engine='python') node_id_scale = all_data['sw_id'].value_counts().sort_index() node_start_id = node_id_scale.index[0] def get_data(node_id : int): data = all_data[all_data['sw_id'] == node_id] return data def get_qlen_list(tx_bytes_diff, interval): bw_list = [x*1e9/interval for x in tx_bytes_diff] # B/s bw_list = [x*8 / 1e9 for x in bw_list] # Gbps return bw_list def get_fig_for_node(node_id): # get data of node data = get_data(int(node_id)) # group data by port groups = data.groupby('port_id') # plot for every port in node fig = px.line() lables=[] for key, df in groups: lables.append('port-'+ str(key)) df = df.reset_index(drop=True) q_cnt = len(df['q_id'].value_counts()) time = list(df['time']) time = time[0:len(time):q_cnt] time = [t / 1e6 for t in time] # ms qlen_list = list(df['port_len']) qlen_list = qlen_list[0:len(qlen_list):q_cnt] # Bytes qlen_list = [qlen / 1e3 for qlen in qlen_list] # KB fig.add_scatter(x=time, y=qlen_list, name='port-'+str(key)) fig.update_layout(title='Switch-'+str(node_id)+'-qlen', xaxis_title='time(ms)', yaxis_title='QueueLength(KB)') offline.plot(fig, filename=curr_work_path+'/../simulation/monitor_output/figs/'+file_name+'/qlen_switch-'+str(node_id)+'.html') # fig.show() if __name__ == "__main__": for i in range(len(node_id_scale)): print("get fig for node: "+str(i+node_start_id)) get_fig_for_node(i+node_start_id) # if __name__ == "__main__": # # get data of node # data = get_data(int(node_id)) # # group data by port # groups = data.groupby('port_id') # # plot for every port in node # plt.figure(figsize=(9,6)) # lables=[] # for key, df in groups: # lables.append('port-'+ str(key)) # df = df.reset_index(drop=True) # q_cnt = len(df['q_id'].value_counts()) # time = list(df['time']) # time = time[0:len(time):q_cnt] # time = [t / 1e6 for t in time] # ms # qlen_list = list(df['port_len']) # qlen_list = qlen_list[0:len(qlen_list):q_cnt] # Bytes # qlen_list = [qlen / 1e3 for qlen in qlen_list] # KB # print(time) # print(qlen_list) # plt.plot(time, qlen_list) # plt.xlabel("Time(ms)") # plt.ylabel("QueueLength(KB)") # plt.legend(lables) # plt.savefig("/home/xuemo.lc/AliLMN-Sim/figs/" + fig_name) # plt.show()