pai-python-sdk/huggingface/huggingface_model_deploy/huggingface_model_deploy.ipynb (195 lines of code) (raw):

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 部署HuggingFace模型\n", "\n", "HuggingFace是一个开源的模型社区,机器学习开发者在社区中可以分享、发现和使用各类机器学习模型。\n", "\n", "本文将介绍如何将HuggingFace社区的模型部署到PAI创建模型推理服务。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "## 费用说明\n", "\n", "本示例将会使用以下云产品,并产生相应的费用账单:\n", "\n", "- PAI-EAS:部署推理服务,详细计费说明请参考[PAI-EAS计费说明](https://help.aliyun.com/zh/pai/product-overview/billing-of-eas)\n", "\n", "> 通过参与云产品免费试用,使用**指定资源机型**,可以免费试用PAI产品,具体请参考[PAI免费试用](https://help.aliyun.com/zh/pai/product-overview/free-quota-for-new-users)。\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "## 安装和配置SDK\n", "\n", "\n", "我们需要首先安装PAI Python SDK以运行本示例。" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "!python -m pip install --upgrade pai" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "\n", "SDK需要配置访问阿里云服务需要的AccessKey,以及当前使用的工作空间和OSS Bucket。在PAI SDK安装之后,通过在**命令行终端** 中执行以下命令,按照引导配置密钥、工作空间等信息。\n", "\n", "\n", "```shell\n", "\n", "# 以下命令,请在 命令行终端 中执行.\n", "\n", "python -m pai.toolkit.config\n", "\n", "```\n", "\n", "我们可以通过以下代码验证配置是否已生效。" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pai\n", "from pai.session import get_default_session\n", "\n", "print(pai.__version__)\n", "\n", "sess = get_default_session()\n", "\n", "# 获取配置的工作空间信息\n", "assert sess.workspace_name is not None\n", "print(sess.workspace_name)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 部署HuggingFace模型\n", "\n", "在本示例中,我们将使用HuggingFace社区提供的情感分类模型 [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english)部署一个模型在线服务,他支持将一段英文文本分类为正面或负面情感。\n", "\n", "通过相应的[模型的详情页](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/tree/main),我们可以获取部署模型所需的信息,包括模型ID(``MODEL_ID``)、模型任务类型(``TASK``)、模型版本(``REVISION``)。\n", "\n", "![](../../images/huggingface-model.png)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "通过PAI Python SDK提供的``HuggingFaceModel``,我们可以轻松地将HuggingFace社区的模型部署到PAI上。" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from pai.huggingface import HuggingFaceModel\n", "\n", "\n", "# 初始化一个HuggingFaceModel\n", "m = HuggingFaceModel(\n", " command=\"python webui/app.py\", # 模型服务启动命令\n", " transformers_version=\"latest\", # 使用的transformers版本, 'latest'表示使用PAI目前支持的最新的版本\n", " environment_variables={\n", " \"MODEL_ID\": \"distilbert-base-uncased-finetuned-sst-2-english\", # 部署模型的ID\n", " \"TASK\": \"text-classification\", # 部署的模型任务类型\n", " \"REVISION\": \"main\", # 部署模型的版本信息\n", " },\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from pai.common.utils import random_str\n", "\n", "\n", "# 部署模型,创建一个模型在线服务\n", "p = m.deploy(\n", " service_name=f\"hf_model_deploy_{random_str(n=8)}\", # 模型服务的名称(地域内唯一)\n", " instance_type=\"ecs.g6.large\", # 模型服务使用的机器实例规格\n", " options={\n", " \"enable_webservice\": True, # 以AIWeb应用的模式启动,支持用户在Web浏览器上使用模型在线服务\n", " },\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "p.predict(data={\"data\": [\"I love you\"]})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "测试完成之后,删除服务,释放机器资源。" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "p.delete_service()" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 2 }