def __init__()

in src/fairseq/fairseq/models/transformer.py [0:0]


    def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
        self.args = args
        super().__init__(dictionary)
        self.register_buffer("version", torch.Tensor([3]))
        self._future_mask = torch.empty(0)

        self.dropout = args.dropout
        self.decoder_layerdrop = args.decoder_layerdrop
        self.share_input_output_embed = args.share_decoder_input_output_embed

        input_embed_dim = embed_tokens.embedding_dim
        embed_dim = args.decoder_embed_dim
        self.embed_dim = embed_dim
        self.output_embed_dim = args.decoder_output_dim

        self.padding_idx = embed_tokens.padding_idx
        self.max_target_positions = args.max_target_positions

        self.embed_tokens = embed_tokens

        self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)

        self.gradient_checkpointing = getattr(args, 'gradient_checkpointing', False)

        if not args.adaptive_input and args.quant_noise_pq > 0:
            self.quant_noise = apply_quant_noise_(
                nn.Linear(embed_dim, embed_dim, bias=False),
                args.quant_noise_pq,
                args.quant_noise_pq_block_size,
            )
        else:
            self.quant_noise = None

        self.project_in_dim = (
            Linear(input_embed_dim, embed_dim, bias=False)
            if embed_dim != input_embed_dim
            else None
        )

        self.embed_positions = (
            PositionalEmbedding(
                args.max_target_positions,
                embed_dim,
                self.padding_idx,
                learned=args.decoder_learned_pos,
            )
            if not args.no_token_positional_embeddings
            else None
        )

        if getattr(args, "layernorm_embedding", False):
            self.layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.layernorm_embedding = None

        self.cross_self_attention = getattr(args, "cross_self_attention", False)

        if self.decoder_layerdrop > 0.0:
            self.layers = LayerDropModuleList(p=self.decoder_layerdrop)
        else:
            self.layers = nn.ModuleList([])
        self.layers.extend([
            self.build_decoder_layer(args, no_encoder_attn)
            for _ in range(args.decoder_layers)
        ])
        self.num_layers = len(self.layers)

        if args.decoder_normalize_before and not getattr(args, "no_decoder_final_norm", False):
            self.layer_norm = LayerNorm(embed_dim)
        else:
            self.layer_norm = None

        self.project_out_dim = (
            Linear(embed_dim, self.output_embed_dim, bias=False)
            if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights
            else None
        )

        self.adaptive_softmax = None
        self.output_projection = None
        if args.adaptive_softmax_cutoff is not None:
            self.adaptive_softmax = AdaptiveSoftmax(
                len(dictionary),
                self.output_embed_dim,
                options.eval_str_list(args.adaptive_softmax_cutoff, type=int),
                dropout=args.adaptive_softmax_dropout,
                adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None,
                factor=args.adaptive_softmax_factor,
                tie_proj=args.tie_adaptive_proj,
            )
        elif self.share_input_output_embed:
            self.output_projection = nn.Linear(
                self.embed_tokens.weight.shape[1],
                self.embed_tokens.weight.shape[0],
                bias=False,
            )
            self.output_projection.weight = self.embed_tokens.weight
        else:
            self.output_projection = nn.Linear(
                self.output_embed_dim, len(dictionary), bias=False
            )
            nn.init.normal_(
                self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5
            )