in src/fairseq/fairseq/legacy_distributed_data_parallel.py [0:0]
def _register_grad_hook(self):
"""
This function registers the callback all-reduction function for the
NCCL backend. All gradients will be all reduced in one single step.
The NCCL reduction will directly be enqueued into the default CUDA
stream. Therefore, no synchronization is needed.
"""
def all_reduce(params):
buffer = self.buffer
nonzero_buffer = False
if len(params) > 1:
offset = 0
for p in params:
sz = p.numel()
if p.grad is not None:
buffer[offset:offset+sz].copy_(p.grad.data.view(-1))
nonzero_buffer = True
else:
buffer[offset:offset+sz].zero_()
offset += sz
else:
# we only have a single grad to all-reduce
p = params[0]
if p.grad is not None:
buffer = p.grad.data
nonzero_buffer = True
elif p.numel() <= self.buffer.numel():
buffer = buffer[:p.numel()]
buffer.zero_()
else:
buffer = torch.zeros_like(p)
if nonzero_buffer:
buffer.div_(self.world_size)
distributed_utils.all_reduce(buffer, self.process_group)
# copy all-reduced grads back into their original place
offset = 0
for p in params:
sz = p.numel()
if p.grad is not None:
p.grad.data.copy_(buffer[offset:offset+sz].view_as(p))
else:
p.grad = buffer[offset:offset+sz].view_as(p).clone()
offset += sz
def reduction_fn():
# This function only needs to be called once
if not self.need_reduction or self.accumulate_grads:
return
self.need_reduction = False
if self.buffer is None:
self.buffer = next(self.module.parameters()).new(self.buffer_size)
# All-reduce the gradients in buckets
offset = 0
buffered_params = []
for param in self.module.parameters():
if not param.requires_grad:
continue
if param.grad is None:
param.grad = torch.zeros_like(param)
if param.grad.requires_grad:
raise RuntimeError("DistributedDataParallel only works "
"with gradients that don't require "
"grad")
sz = param.numel()
if sz > self.buffer.numel():
# all-reduce big params directly
all_reduce([param])
else:
if offset + sz > self.buffer.numel():
all_reduce(buffered_params)
offset = 0
buffered_params.clear()
buffered_params.append(param)
offset += sz
if len(buffered_params) > 0:
all_reduce(buffered_params)
# Now register the reduction hook on the parameters
for p in self.module.parameters():
def allreduce_hook(*unused):
self.need_reduction = True
Variable._execution_engine.queue_callback(reduction_fn)
if p.requires_grad:
p.register_hook(allreduce_hook)