segmentation/model/psanet.py [137:155]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            fea_dim *= 2
        self.cls = nn.Sequential(
            nn.Conv2d(fea_dim, 512, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Dropout2d(p=dropout),
            nn.Conv2d(512, classes, kernel_size=1)
        )
        if self.training:
            self.aux = nn.Sequential(
                nn.Conv2d(1024, 256, kernel_size=3, padding=1, bias=False),
                nn.BatchNorm2d(256),
                nn.ReLU(inplace=True),
                nn.Dropout2d(p=dropout),
                nn.Conv2d(256, classes, kernel_size=1)
            )

    def forward(self, x, y=None):
        x_size = x.size()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



segmentation/model/pspnet.py [65:83]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            fea_dim *= 2
        self.cls = nn.Sequential(
            nn.Conv2d(fea_dim, 512, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Dropout2d(p=dropout),
            nn.Conv2d(512, classes, kernel_size=1)
        )
        if self.training:
            self.aux = nn.Sequential(
                nn.Conv2d(1024, 256, kernel_size=3, padding=1, bias=False),
                nn.BatchNorm2d(256),
                nn.ReLU(inplace=True),
                nn.Dropout2d(p=dropout),
                nn.Conv2d(256, classes, kernel_size=1)
            )

    def forward(self, x, y=None):
        x_size = x.size()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



