segmentation/tool/train.py [298:439]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        output, main_loss, aux_loss = model(input, target)
        if not args.multiprocessing_distributed:
            main_loss, aux_loss = torch.mean(main_loss), torch.mean(aux_loss)
        loss = main_loss + args.aux_weight * aux_loss

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        n = input.size(0)
        if args.multiprocessing_distributed:
            main_loss, aux_loss, loss = main_loss.detach() * n, aux_loss * n, loss * n  # not considering ignore pixels
            count = target.new_tensor([n], dtype=torch.long)
            dist.all_reduce(main_loss), dist.all_reduce(aux_loss), dist.all_reduce(loss), dist.all_reduce(count)
            n = count.item()
            main_loss, aux_loss, loss = main_loss / n, aux_loss / n, loss / n

        intersection, union, target = intersectionAndUnionGPU(output, target, args.classes, args.ignore_label)
        if args.multiprocessing_distributed:
            dist.all_reduce(intersection), dist.all_reduce(union), dist.all_reduce(target)
        intersection, union, target = intersection.cpu().numpy(), union.cpu().numpy(), target.cpu().numpy()
        intersection_meter.update(intersection), union_meter.update(union), target_meter.update(target)

        accuracy = sum(intersection_meter.val) / (sum(target_meter.val) + 1e-10)
        main_loss_meter.update(main_loss.item(), n)
        aux_loss_meter.update(aux_loss.item(), n)
        loss_meter.update(loss.item(), n)
        batch_time.update(time.time() - end)
        end = time.time()

        current_iter = epoch * len(train_loader) + i + 1
        current_lr = poly_learning_rate(args.base_lr, current_iter, max_iter, power=args.power)
        for index in range(0, args.index_split):
            optimizer.param_groups[index]['lr'] = current_lr
        for index in range(args.index_split, len(optimizer.param_groups)):
            optimizer.param_groups[index]['lr'] = current_lr * 10
        remain_iter = max_iter - current_iter
        remain_time = remain_iter * batch_time.avg
        t_m, t_s = divmod(remain_time, 60)
        t_h, t_m = divmod(t_m, 60)
        remain_time = '{:02d}:{:02d}:{:02d}'.format(int(t_h), int(t_m), int(t_s))

        if (i + 1) % args.print_freq == 0 and main_process():
            logger.info('Epoch: [{}/{}][{}/{}] '
                        'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
                        'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}) '
                        'Remain {remain_time} '
                        'MainLoss {main_loss_meter.val:.4f} '
                        'AuxLoss {aux_loss_meter.val:.4f} '
                        'Loss {loss_meter.val:.4f} '
                        'Accuracy {accuracy:.4f}.'.format(epoch+1, args.epochs, i + 1, len(train_loader),
                                                          batch_time=batch_time,
                                                          data_time=data_time,
                                                          remain_time=remain_time,
                                                          main_loss_meter=main_loss_meter,
                                                          aux_loss_meter=aux_loss_meter,
                                                          loss_meter=loss_meter,
                                                          accuracy=accuracy))
        if main_process():
            writer.add_scalar('loss_train_batch', main_loss_meter.val, current_iter)
            writer.add_scalar('mIoU_train_batch', np.mean(intersection / (union + 1e-10)), current_iter)
            writer.add_scalar('mAcc_train_batch', np.mean(intersection / (target + 1e-10)), current_iter)
            writer.add_scalar('allAcc_train_batch', accuracy, current_iter)

    iou_class = intersection_meter.sum / (union_meter.sum + 1e-10)
    accuracy_class = intersection_meter.sum / (target_meter.sum + 1e-10)
    mIoU = np.mean(iou_class)
    mAcc = np.mean(accuracy_class)
    allAcc = sum(intersection_meter.sum) / (sum(target_meter.sum) + 1e-10)
    if main_process():
        logger.info('Train result at epoch [{}/{}]: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.'.format(epoch+1, args.epochs, mIoU, mAcc, allAcc))
    return main_loss_meter.avg, mIoU, mAcc, allAcc


def validate(val_loader, model, criterion):
    if main_process():
        logger.info('>>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>')
    batch_time = AverageMeter()
    data_time = AverageMeter()
    loss_meter = AverageMeter()
    intersection_meter = AverageMeter()
    union_meter = AverageMeter()
    target_meter = AverageMeter()

    model.eval()
    end = time.time()
    for i, (input, target) in enumerate(val_loader):
        data_time.update(time.time() - end)
        input = input.cuda(non_blocking=True)
        target = target.cuda(non_blocking=True)
        output = model(input)
        if args.zoom_factor != 8:
            output = F.interpolate(output, size=target.size()[1:], mode='bilinear', align_corners=True)
        loss = criterion(output, target)

        n = input.size(0)
        if args.multiprocessing_distributed:
            loss = loss * n  # not considering ignore pixels
            count = target.new_tensor([n], dtype=torch.long)
            dist.all_reduce(loss), dist.all_reduce(count)
            n = count.item()
            loss = loss / n
        else:
            loss = torch.mean(loss)

        output = output.max(1)[1]
        intersection, union, target = intersectionAndUnionGPU(output, target, args.classes, args.ignore_label)
        if args.multiprocessing_distributed:
            dist.all_reduce(intersection), dist.all_reduce(union), dist.all_reduce(target)
        intersection, union, target = intersection.cpu().numpy(), union.cpu().numpy(), target.cpu().numpy()
        intersection_meter.update(intersection), union_meter.update(union), target_meter.update(target)

        accuracy = sum(intersection_meter.val) / (sum(target_meter.val) + 1e-10)
        loss_meter.update(loss.item(), input.size(0))
        batch_time.update(time.time() - end)
        end = time.time()
        if ((i + 1) % args.print_freq == 0) and main_process():
            logger.info('Test: [{}/{}] '
                        'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
                        'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}) '
                        'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f}) '
                        'Accuracy {accuracy:.4f}.'.format(i + 1, len(val_loader),
                                                          data_time=data_time,
                                                          batch_time=batch_time,
                                                          loss_meter=loss_meter,
                                                          accuracy=accuracy))

    iou_class = intersection_meter.sum / (union_meter.sum + 1e-10)
    accuracy_class = intersection_meter.sum / (target_meter.sum + 1e-10)
    mIoU = np.mean(iou_class)
    mAcc = np.mean(accuracy_class)
    allAcc = sum(intersection_meter.sum) / (sum(target_meter.sum) + 1e-10)
    if main_process():
        logger.info('Val result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.'.format(mIoU, mAcc, allAcc))
        for i in range(args.classes):
            logger.info('Class_{} Result: iou/accuracy {:.4f}/{:.4f}.'.format(i, iou_class[i], accuracy_class[i]))
        logger.info('<<<<<<<<<<<<<<<<< End Evaluation <<<<<<<<<<<<<<<<<')
    return loss_meter.avg, mIoU, mAcc, allAcc


if __name__ == '__main__':
    main()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



segmentation/tool/train_cnsn.py [314:455]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            output, main_loss, aux_loss = model(input, target)
        if not args.multiprocessing_distributed:
            main_loss, aux_loss = torch.mean(main_loss), torch.mean(aux_loss)
        loss = main_loss + args.aux_weight * aux_loss

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        n = input.size(0)
        if args.multiprocessing_distributed:
            main_loss, aux_loss, loss = main_loss.detach() * n, aux_loss * n, loss * n  # not considering ignore pixels
            count = target.new_tensor([n], dtype=torch.long)
            dist.all_reduce(main_loss), dist.all_reduce(aux_loss), dist.all_reduce(loss), dist.all_reduce(count)
            n = count.item()
            main_loss, aux_loss, loss = main_loss / n, aux_loss / n, loss / n

        intersection, union, target = intersectionAndUnionGPU(output, target, args.classes, args.ignore_label)
        if args.multiprocessing_distributed:
            dist.all_reduce(intersection), dist.all_reduce(union), dist.all_reduce(target)
        intersection, union, target = intersection.cpu().numpy(), union.cpu().numpy(), target.cpu().numpy()
        intersection_meter.update(intersection), union_meter.update(union), target_meter.update(target)

        accuracy = sum(intersection_meter.val) / (sum(target_meter.val) + 1e-10)
        main_loss_meter.update(main_loss.item(), n)
        aux_loss_meter.update(aux_loss.item(), n)
        loss_meter.update(loss.item(), n)
        batch_time.update(time.time() - end)
        end = time.time()

        current_iter = epoch * len(train_loader) + i + 1
        current_lr = poly_learning_rate(args.base_lr, current_iter, max_iter, power=args.power)
        for index in range(0, args.index_split):
            optimizer.param_groups[index]['lr'] = current_lr
        for index in range(args.index_split, len(optimizer.param_groups)):
            optimizer.param_groups[index]['lr'] = current_lr * 10
        remain_iter = max_iter - current_iter
        remain_time = remain_iter * batch_time.avg
        t_m, t_s = divmod(remain_time, 60)
        t_h, t_m = divmod(t_m, 60)
        remain_time = '{:02d}:{:02d}:{:02d}'.format(int(t_h), int(t_m), int(t_s))

        if (i + 1) % args.print_freq == 0 and main_process():
            logger.info('Epoch: [{}/{}][{}/{}] '
                        'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
                        'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}) '
                        'Remain {remain_time} '
                        'MainLoss {main_loss_meter.val:.4f} '
                        'AuxLoss {aux_loss_meter.val:.4f} '
                        'Loss {loss_meter.val:.4f} '
                        'Accuracy {accuracy:.4f}.'.format(epoch+1, args.epochs, i + 1, len(train_loader),
                                                          batch_time=batch_time,
                                                          data_time=data_time,
                                                          remain_time=remain_time,
                                                          main_loss_meter=main_loss_meter,
                                                          aux_loss_meter=aux_loss_meter,
                                                          loss_meter=loss_meter,
                                                          accuracy=accuracy))
        if main_process():
            writer.add_scalar('loss_train_batch', main_loss_meter.val, current_iter)
            writer.add_scalar('mIoU_train_batch', np.mean(intersection / (union + 1e-10)), current_iter)
            writer.add_scalar('mAcc_train_batch', np.mean(intersection / (target + 1e-10)), current_iter)
            writer.add_scalar('allAcc_train_batch', accuracy, current_iter)

    iou_class = intersection_meter.sum / (union_meter.sum + 1e-10)
    accuracy_class = intersection_meter.sum / (target_meter.sum + 1e-10)
    mIoU = np.mean(iou_class)
    mAcc = np.mean(accuracy_class)
    allAcc = sum(intersection_meter.sum) / (sum(target_meter.sum) + 1e-10)
    if main_process():
        logger.info('Train result at epoch [{}/{}]: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.'.format(epoch+1, args.epochs, mIoU, mAcc, allAcc))
    return main_loss_meter.avg, mIoU, mAcc, allAcc


def validate(val_loader, model, criterion):
    if main_process():
        logger.info('>>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>')
    batch_time = AverageMeter()
    data_time = AverageMeter()
    loss_meter = AverageMeter()
    intersection_meter = AverageMeter()
    union_meter = AverageMeter()
    target_meter = AverageMeter()

    model.eval()
    end = time.time()
    for i, (input, target) in enumerate(val_loader):
        data_time.update(time.time() - end)
        input = input.cuda(non_blocking=True)
        target = target.cuda(non_blocking=True)
        output = model(input)
        if args.zoom_factor != 8:
            output = F.interpolate(output, size=target.size()[1:], mode='bilinear', align_corners=True)
        loss = criterion(output, target)

        n = input.size(0)
        if args.multiprocessing_distributed:
            loss = loss * n  # not considering ignore pixels
            count = target.new_tensor([n], dtype=torch.long)
            dist.all_reduce(loss), dist.all_reduce(count)
            n = count.item()
            loss = loss / n
        else:
            loss = torch.mean(loss)

        output = output.max(1)[1]
        intersection, union, target = intersectionAndUnionGPU(output, target, args.classes, args.ignore_label)
        if args.multiprocessing_distributed:
            dist.all_reduce(intersection), dist.all_reduce(union), dist.all_reduce(target)
        intersection, union, target = intersection.cpu().numpy(), union.cpu().numpy(), target.cpu().numpy()
        intersection_meter.update(intersection), union_meter.update(union), target_meter.update(target)

        accuracy = sum(intersection_meter.val) / (sum(target_meter.val) + 1e-10)
        loss_meter.update(loss.item(), input.size(0))
        batch_time.update(time.time() - end)
        end = time.time()
        if ((i + 1) % args.print_freq == 0) and main_process():
            logger.info('Test: [{}/{}] '
                        'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
                        'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}) '
                        'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f}) '
                        'Accuracy {accuracy:.4f}.'.format(i + 1, len(val_loader),
                                                          data_time=data_time,
                                                          batch_time=batch_time,
                                                          loss_meter=loss_meter,
                                                          accuracy=accuracy))

    iou_class = intersection_meter.sum / (union_meter.sum + 1e-10)
    accuracy_class = intersection_meter.sum / (target_meter.sum + 1e-10)
    mIoU = np.mean(iou_class)
    mAcc = np.mean(accuracy_class)
    allAcc = sum(intersection_meter.sum) / (sum(target_meter.sum) + 1e-10)
    if main_process():
        logger.info('Val result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.'.format(mIoU, mAcc, allAcc))
        for i in range(args.classes):
            logger.info('Class_{} Result: iou/accuracy {:.4f}/{:.4f}.'.format(i, iou_class[i], accuracy_class[i]))
        logger.info('<<<<<<<<<<<<<<<<< End Evaluation <<<<<<<<<<<<<<<<<')
    return loss_meter.avg, mIoU, mAcc, allAcc


if __name__ == '__main__':
    main()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



