def train_cn_image_augmix()

in imagenet.py [0:0]


def train_cn_image_augmix(net, train_loader, optimizer):
  """Train for one epoch."""
  print('running train_cn_image_augmix')
  net.train()
  losses = AverageMeter()
  s_losses = AverageMeter()
  c_losses = AverageMeter()
  top1 = AverageMeter()
  top5 = AverageMeter()

  end = time.time()
  for i, (images, targets) in enumerate(train_loader):
    # Compute data loading time
    # data_time = time.time() - end

    images_all = torch.cat(images, 0)
    images_all = images_all.cuda()
    targets = targets.cuda()

    r = np.random.rand(1)
    if r < args.cn_prob:
        images_all = cn_op_2ins_space_chan(images_all, beta=args.beta, crop=args.crop)

    logits_all = net(images_all)
    logits_clean, logits_aug1, logits_aug2 = torch.split(
        logits_all, images[0].size(0))

    # Cross-entropy is only computed on clean images
    loss = F.cross_entropy(logits_clean, targets)

    p_clean, p_aug1, p_aug2 = F.softmax(
        logits_clean, dim=1), F.softmax(
        logits_aug1, dim=1), F.softmax(
        logits_aug2, dim=1)

    # Clamp mixture distribution to avoid exploding KL divergence
    p_mixture = torch.clamp((p_clean + p_aug1 + p_aug2) / 3., 1e-7, 1).log()
    consist_loss = (F.kl_div(p_mixture, p_clean, reduction='batchmean') +
                    F.kl_div(p_mixture, p_aug1, reduction='batchmean') +
                    F.kl_div(p_mixture, p_aug2, reduction='batchmean')) / 3.

    s_losses.update(loss.item(), images[0].size(0))
    c_losses.update(consist_loss.item(), images[0].size(0))
    loss += 12 * consist_loss
    losses.update(loss.item(), images[0].size(0))

    err1, err5 = error(logits_clean, targets, topk=(1, 5))  # pylint: disable=unbalanced-tuple-unpacking
    top1.update(err1.item(), images[0].size(0))
    top5.update(err5.item(), images[0].size(0))

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Compute batch computation time and update moving averages.
    batch_time = time.time() - end
    end = time.time()

    if i % args.print_freq == 0:
        # print('Train Loss {:.3f}'.format(loss_ema))
        print('Iter: [{0}/{1}]\t'
              'Supervised Loss {s_losses.val:.4f} ({s_losses.avg:.4f})\t'
              'Consistency Loss {c_losses.val:.4f} ({c_losses.avg:.4f})\t'
              'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(i, len(train_loader),
               s_losses=s_losses, c_losses=c_losses, loss=losses))

    # if i == 10:
    #     break

  return top1.avg