def step()

in src/datatuner/lm/novograd.py [0:0]


    def step(self, closure=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
            and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError("Sparse gradients are not supported.")
                amsgrad = group["amsgrad"]

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state["step"] = 0
                    # Exponential moving average of gradient values
                    state["exp_avg"] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state["exp_avg_sq"] = torch.zeros([]).to(state["exp_avg"].device)
                    if amsgrad:
                        # Maintains max of all exp. moving avg. of sq. grad. values
                        state["max_exp_avg_sq"] = torch.zeros([]).to(state["exp_avg"].device)

                exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
                if amsgrad:
                    max_exp_avg_sq = state["max_exp_avg_sq"]
                beta1, beta2 = group["betas"]

                state["step"] += 1

                norm = torch.sum(torch.pow(grad, 2))

                if exp_avg_sq == 0:
                    exp_avg_sq.copy_(norm)
                else:
                    exp_avg_sq.mul_(beta2).add_(1 - beta2, norm)

                if amsgrad:
                    # Maintains the maximum of all 2nd moment running avg. till now
                    torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
                    # Use the max. for normalizing running avg. of gradient
                    denom = max_exp_avg_sq.sqrt().add_(group["eps"])
                else:
                    denom = exp_avg_sq.sqrt().add_(group["eps"])

                grad.div_(denom)
                if group["weight_decay"] != 0:
                    grad.add_(group["weight_decay"], p.data)
                if group["grad_averaging"]:
                    grad.mul_(1 - beta1)
                exp_avg.mul_(beta1).add_(grad)

                p.data.add_(-group["lr"], exp_avg)

        return loss