in src/datatuner/lm/novograd.py [0:0]
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError("Sparse gradients are not supported.")
amsgrad = group["amsgrad"]
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros([]).to(state["exp_avg"].device)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state["max_exp_avg_sq"] = torch.zeros([]).to(state["exp_avg"].device)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
if amsgrad:
max_exp_avg_sq = state["max_exp_avg_sq"]
beta1, beta2 = group["betas"]
state["step"] += 1
norm = torch.sum(torch.pow(grad, 2))
if exp_avg_sq == 0:
exp_avg_sq.copy_(norm)
else:
exp_avg_sq.mul_(beta2).add_(1 - beta2, norm)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group["eps"])
else:
denom = exp_avg_sq.sqrt().add_(group["eps"])
grad.div_(denom)
if group["weight_decay"] != 0:
grad.add_(group["weight_decay"], p.data)
if group["grad_averaging"]:
grad.mul_(1 - beta1)
exp_avg.mul_(beta1).add_(grad)
p.data.add_(-group["lr"], exp_avg)
return loss