main_byol.py [39:62]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                    help='model architecture')
parser.add_argument('--backbone', default='resnet50_encoder',
                    choices=backbone_model_names,
                    help='model architecture: ' +
                        ' | '.join(backbone_model_names) +
                        ' (default: resnet50_encoder)')
parser.add_argument('-j', '--workers', default=32, type=int, metavar='N',
                    help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('--warmup-epoch', default=0, type=int, metavar='N',
                    help='number of epochs for learning warmup')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.03, type=float,
                    metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[120, 160], nargs='*', type=int,
                    help='learning rate schedule (when to drop lr by 10x)')
parser.add_argument('--cos', action='store_true', help='use cosine lr schedule')
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



main_moco.py [39:62]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                    help='model architecture')
parser.add_argument('--backbone', default='resnet50_encoder',
                    choices=backbone_model_names,
                    help='model architecture: ' +
                        ' | '.join(backbone_model_names) +
                        ' (default: resnet50_encoder)')
parser.add_argument('-j', '--workers', default=32, type=int, metavar='N',
                    help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('--warmup-epoch', default=0, type=int, metavar='N',
                    help='number of epochs for learning warmup')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.03, type=float,
                    metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[120, 160], nargs='*', type=int,
                    help='learning rate schedule (when to drop lr by 10x)')
parser.add_argument('--cos', action='store_true', help='use cosine lr schedule')
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



