main_byol.py [79:98]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                    help='path to MoCo pretrained model (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--world-size', default=-1, type=int,
                    help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
                    help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
                    help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
                    help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
                    help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
                    help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
                    help='Use multi-processing distributed training to launch '
                         'N processes per node, which has N GPUs. This is the '
                         'fastest way to use PyTorch for either single node or '
                         'multi node data parallel training')
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



main_cls.py [91:110]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                    help='path to MoCo pretrained model (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--world-size', default=-1, type=int,
                    help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
                    help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
                    help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
                    help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
                    help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
                    help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
                    help='Use multi-processing distributed training to launch '
                         'N processes per node, which has N GPUs. This is the '
                         'fastest way to use PyTorch for either single node or '
                         'multi node data parallel training')
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



