in main_moco.py [0:0]
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = utils.AverageMeter('Time', ':6.3f')
data_time = utils.AverageMeter('Data', ':6.3f')
losses = utils.AverageMeter('Loss', ':.4e')
top1 = utils.AverageMeter('Acc@1', ':6.2f')
top5 = utils.AverageMeter('Acc@5', ':6.2f')
curr_lr = utils.InstantMeter('LR', '')
progress = utils.ProgressMeter(
len(train_loader),
[curr_lr, batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}/{}]\t".format(epoch, args.epochs))
# switch to train mode
model.train()
if "EMAN" in args.arch:
print("setting the key model to eval mode when using EMAN")
if hasattr(model, 'module'):
model.module.encoder_k.eval()
else:
model.encoder_k.eval()
end = time.time()
for i, (images, _) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images[0] = images[0].cuda(args.gpu, non_blocking=True)
images[1] = images[1].cuda(args.gpu, non_blocking=True)
# warmup learning rate
if epoch < args.warmup_epoch:
warmup_step = args.warmup_epoch * len(train_loader)
curr_step = epoch * len(train_loader) + i + 1
lr_schedule.warmup_learning_rate(optimizer, curr_step, warmup_step, args)
curr_lr.update(optimizer.param_groups[0]['lr'])
# compute output
output, target = model(im_q=images[0], im_k=images[1])
loss = criterion(output, target)
# acc1/acc5 are (K+1)-way contrast classifier accuracy
# measure accuracy and record loss
acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images[0].size(0))
top1.update(acc1[0], images[0].size(0))
top5.update(acc5[0], images[0].size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)