in data/transforms.py [0:0]
def get_augmentations(aug_type):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
default_train_augs = [
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
]
default_val_augs = [
transforms.Resize(256),
transforms.CenterCrop(224),
]
appendix_augs = [
transforms.ToTensor(),
normalize,
]
if aug_type == 'DefaultTrain':
augs = default_train_augs + appendix_augs
elif aug_type == 'DefaultVal':
augs = default_val_augs + appendix_augs
elif aug_type == 'RandAugment':
augs = default_train_augs + [RandAugment(n=2, m=10)] + appendix_augs
elif aug_type == 'MoCoV1':
augs = [
transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
transforms.RandomGrayscale(p=0.2),
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
transforms.RandomHorizontalFlip()
] + appendix_augs
elif aug_type == 'MoCoV2':
augs = [
transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.5),
transforms.RandomHorizontalFlip(),
] + appendix_augs
else:
raise NotImplementedError('augmentation type not found: {}'.format(aug_type))
return augs