def step()

in utils/LARS.py [0:0]


    def step(self, closure=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            weight_decay = group['weight_decay']
            momentum = group['momentum']
            dampening = group['dampening']
            eta = group['eta']
            nesterov = group['nesterov']
            lr = group['lr']
            lars_exclude = group.get('lars_exclude', False)

            for p in group['params']:
                if p.grad is None:
                    continue

                d_p = p.grad

                if lars_exclude:
                    local_lr = 1.
                else:
                    weight_norm = torch.norm(p).item()
                    grad_norm = torch.norm(d_p).item()
                    # Compute local learning rate for this layer
                    local_lr = eta * weight_norm / \
                        (grad_norm + weight_decay * weight_norm)

                actual_lr = local_lr * lr
                d_p = d_p.add(p, alpha=weight_decay).mul(actual_lr)
                if momentum != 0:
                    param_state = self.state[p]
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = \
                                torch.clone(d_p).detach()
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
                    if nesterov:
                        d_p = d_p.add(buf, alpha=momentum)
                    else:
                        d_p = buf
                p.add_(-d_p)

        return loss