def get_byol_tranforms()

in data/transforms.py [0:0]


def get_byol_tranforms():
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    augmentation1 = [
        transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
        transforms.RandomHorizontalFlip(),
        transforms.RandomApply([
            transforms.ColorJitter(0.4, 0.4, 0.2, 0.1)  # not strengthened
        ], p=0.8),
        transforms.RandomGrayscale(p=0.2),
        transforms.RandomApply([GaussianBlur([.1, 2.])], p=1.),
        transforms.RandomApply([Solarize()], p=0.),
        transforms.ToTensor(),
        normalize
    ]
    augmentation2 = [
        transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
        transforms.RandomHorizontalFlip(),
        transforms.RandomApply([
            transforms.ColorJitter(0.4, 0.4, 0.2, 0.1)  # not strengthened
        ], p=0.8),
        transforms.RandomGrayscale(p=0.2),
        transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.1),
        transforms.RandomApply([Solarize()], p=0.2),
        transforms.ToTensor(),
        normalize
    ]
    transform1 = transforms.Compose(augmentation1)
    transform2 = transforms.Compose(augmentation2)
    return transform1, transform2