def init_weights()

in utils/init.py [0:0]


def init_weights(module, init_linear='normal'):
    assert init_linear in ['normal', 'kaiming'], \
        "Undefined init_linear: {}".format(init_linear)
    for m in module.modules():
        if isinstance(m, nn.Linear):
            if init_linear == 'normal':
                normal_init(m, std=0.01)
            else:
                c2_msra_fill(m)
        elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, nn.GroupNorm, nn.SyncBatchNorm)):
            if m.weight is not None:
                nn.init.constant_(m.weight, 1)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)